IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i5p4058-d1079191.html
   My bibliography  Save this article

Existing Building Renovation: A Review of Barriers to Economic and Environmental Benefits

Author

Listed:
  • Haolan Liao

    (School of Economics, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China)

  • Rong Ren

    (School of Architecture and Urban-Rural Planning, Fuzhou University, Fuzhou 350025, China
    These authors contributed equally to this work.)

  • Lu Li

    (College of Environmental Science Engineering, Hunan University, Changsha 410082, China
    These authors contributed equally to this work.)

Abstract

The renovation of old buildings provides an important approach to energy saving and emission reduction with low economic costs. The current important issue remains how to determine the optimal cost-effective technical path for a specific project, although there are a large number of retrofit technologies to choose from. Based on a systematic perspective, this paper conducts a quantitative analysis of the environmental and economic benefits of building renovation, and compares and studies the role and challenges of different countries in the process of recycling waste building materials and technological innovation to extend the life of buildings. Through the use of VOSviewer, 1402 papers from the Web of Science core collection database were visualized, analyzed, and deduced, and the research context and development trends of architectural renovation were sorted out and presented. Finally, this article discusses the status and application process of existing building renovation technologies, including the current obstacles that need to be resolved. It puts forward a vision for the future development of building renovation, emphasizing that top-down guidance is essential to future carbon neutral goals.

Suggested Citation

  • Haolan Liao & Rong Ren & Lu Li, 2023. "Existing Building Renovation: A Review of Barriers to Economic and Environmental Benefits," IJERPH, MDPI, vol. 20(5), pages 1-23, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:5:p:4058-:d:1079191
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/5/4058/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/5/4058/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ascione, Fabrizio & Bianco, Nicola & De Masi, Rosa Francesca & de’ Rossi, Filippo & Vanoli, Giuseppe Peter, 2014. "Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season," Applied Energy, Elsevier, vol. 113(C), pages 990-1007.
    2. Martinaitis, Vytautas & Kazakevicius, Eduardas & Vitkauskas, Aloyzas, 2007. "A two-factor method for appraising building renovation and energy efficiency improvement projects," Energy Policy, Elsevier, vol. 35(1), pages 192-201, January.
    3. Goldman, Charles A. & Greely, Kathleen M. & Harris, Jeffrey P., 1988. "Retrofit experience in U.S. multifamily buildings: Energy savings, costs, and economics," Energy, Elsevier, vol. 13(11), pages 797-811.
    4. Millot, Ariane & Krook-Riekkola, Anna & Maïzi, Nadia, 2020. "Guiding the future energy transition to net-zero emissions: Lessons from exploring the differences between France and Sweden," Energy Policy, Elsevier, vol. 139(C).
    5. Liao, Haolan & Zhang, Qingyu & Li, Lu, 2023. "Optimal procurement strategy for multi-echelon remanufacturing systems under quality uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    6. Ástmarsson, Björn & Jensen, Per Anker & Maslesa, Esmir, 2013. "Sustainable renovation of residential buildings and the landlord/tenant dilemma," Energy Policy, Elsevier, vol. 63(C), pages 355-362.
    7. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
    8. César Benavente-Peces, 2019. "On the Energy Efficiency in the Next Generation of Smart Buildings—Supporting Technologies and Techniques," Energies, MDPI, vol. 12(22), pages 1-25, November.
    9. Li, Jun & Ng, S. Thomas & Skitmore, Martin, 2017. "Review of low-carbon refurbishment solutions for residential buildings with particular reference to multi-story buildings in Hong Kong," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 393-407.
    10. Khozema Ahmed Ali & Mardiana Idayu Ahmad & Yusri Yusup, 2020. "Issues, Impacts, and Mitigations of Carbon Dioxide Emissions in the Building Sector," Sustainability, MDPI, vol. 12(18), pages 1-11, September.
    11. Omer, Abdeen Mustafa, 2008. "Energy, environment and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2265-2300, December.
    12. Martin Jakob, 2007. "The drivers of and barriers to energy efficiency in renovation decisions of single-family home-owners," CEPE Working paper series 07-56, CEPE Center for Energy Policy and Economics, ETH Zurich.
    13. Qu, Ke & Chen, Xiangjie & Wang, Yixin & Calautit, John & Riffat, Saffa & Cui, Xin, 2021. "Comprehensive energy, economic and thermal comfort assessments for the passive energy retrofit of historical buildings - A case study of a late nineteenth-century Victorian house renovation in the UK," Energy, Elsevier, vol. 220(C).
    14. Seljom, Pernille & Lindberg, Karen Byskov & Tomasgard, Asgeir & Doorman, Gerard & Sartori, Igor, 2017. "The impact of Zero Energy Buildings on the Scandinavian energy system," Energy, Elsevier, vol. 118(C), pages 284-296.
    15. Sonia I. Seneviratne & Markus G. Donat & Andy J. Pitman & Reto Knutti & Robert L. Wilby, 2016. "Allowable CO2 emissions based on regional and impact-related climate targets," Nature, Nature, vol. 529(7587), pages 477-483, January.
    16. Ye, Ling & Cheng, Zhijun & Wang, Qingqin & Lin, Haiyan & Lin, Changqing & Liu, Bin, 2015. "Developments of Green Building Standards in China," Renewable Energy, Elsevier, vol. 73(C), pages 115-122.
    17. Liu, Guo & Li, Xiaohu & Tan, Yongtao & Zhang, Guomin, 2020. "Building green retrofit in China: Policies, barriers and recommendations," Energy Policy, Elsevier, vol. 139(C).
    18. Heinz, Andreas & Rieberer, René, 2021. "Energetic and economic analysis of a PV-assisted air-to-water heat pump system for renovated residential buildings with high-temperature heat emission system," Applied Energy, Elsevier, vol. 293(C).
    19. Power, Anne, 2008. "Does demolition or refurbishment of old and inefficient homes help to increase our environmental, social and economic viability?," Energy Policy, Elsevier, vol. 36(12), pages 4487-4501, December.
    20. Price, Lynn & Levine, Mark D. & Zhou, Nan & Fridley, David & Aden, Nathaniel & Lu, Hongyou & McNeil, Michael & Zheng, Nina & Qin, Yining & Yowargana, Ping, 2011. "Assessment of China's energy-saving and emission-reduction accomplishments and opportunities during the 11th Five Year Plan," Energy Policy, Elsevier, vol. 39(4), pages 2165-2178, April.
    21. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    22. Liane Thuvander & Paula Femenías & Kristina Mjörnell & Pär Meiling, 2012. "Unveiling the Process of Sustainable Renovation," Sustainability, MDPI, vol. 4(6), pages 1-26, June.
    23. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2012. "Impact of climate change on energy use in the built environment in different climate zones – A review," Energy, Elsevier, vol. 42(1), pages 103-112.
    24. Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2019. "Real-time energy convex optimization, via electrical storage, in buildings – A review," Renewable Energy, Elsevier, vol. 139(C), pages 1355-1365.
    25. Liao, Haolan & Zhang, Qingyu & Shen, Neng & Nie, Yongyou & Li, Lu, 2021. "Coordination between forward and reverse production streams for maximum profitability," Omega, Elsevier, vol. 104(C).
    26. Bhadbhade, Navdeep & Yilmaz, Selin & Zuberi, Jibran S. & Eichhammer, Wolfgang & Patel, Martin K., 2020. "The evolution of energy efficiency in Switzerland in the period 2000–2016," Energy, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoni Gao & Xiangmin Guo & Tiantian Lo, 2023. "M-StruGAN: An Automatic 2D-Plan Generation System under Mixed Structural Constraints for Homestays," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    2. Marko Å ostar & Ines Å koko, 2024. "Unpacking the Complexities of Energy Renovation Programs for Family Houses: Case Study of Croatia," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 12-25, July.
    3. Weihao Huang & Qifan Xu, 2024. "Sustainable-Driven Renovation of Existing Residential Buildings in China: A Systematic Exploration Based on Review and Solution Approaches," Sustainability, MDPI, vol. 16(10), pages 1-35, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefan Olsson & Tove Malmqvist & Mauritz Glaumann, 2015. "Managing Sustainability Aspects in Renovation Processes: Interview Study and Outline of a Process Model," Sustainability, MDPI, vol. 7(6), pages 1-17, May.
    2. Weihao Huang & Qifan Xu, 2024. "Sustainable-Driven Renovation of Existing Residential Buildings in China: A Systematic Exploration Based on Review and Solution Approaches," Sustainability, MDPI, vol. 16(10), pages 1-35, May.
    3. Jia, Ling & Qian, Queena K. & Meijer, Frits & Visscher, Henk, 2021. "How information stimulates homeowners’ cooperation in residential building energy retrofits in China," Energy Policy, Elsevier, vol. 157(C).
    4. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    5. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Kristina Mjörnell & Paula Femenías & Kerstin Annadotter, 2019. "Renovation Strategies for Multi-Residential Buildings from the Record Years in Sweden—Profit-Driven or Socioeconomically Responsible?," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    7. Li, Xian-Xiang, 2018. "Linking residential electricity consumption and outdoor climate in a tropical city," Energy, Elsevier, vol. 157(C), pages 734-743.
    8. Shen, Peiliang & Jiang, Yi & Zhang, Yangyang & Liu, Songhui & Xuan, Dongxing & Lu, Jianxin & Zhang, Shipeng & Poon, Chi Sun, 2023. "Production of aragonite whiskers by carbonation of fine recycled concrete wastes: An alternative pathway for efficient CO2 sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    9. Younghoon Kwak & Jeong-A Kang & Jung-Ho Huh & Tae-Hyoung Kim & Young-Sun Jeong, 2019. "An Analysis of the Effectiveness of Greenhouse Gas Reduction Policy for Office Building Design in South Korea," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    10. Modeste, Kameni Nematchoua & Mempouo, Blaise & René, Tchinda & Costa, Ángel M. & Orosa, José A. & Raminosoa, Chrysostôme R.R. & Mamiharijaona, Ramaroson, 2015. "Resource potential and energy efficiency in the buildings of Cameroon: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 835-846.
    11. Ballarini, Ilaria & Corrado, Vincenzo & Madonna, Francesco & Paduos, Simona & Ravasio, Franco, 2017. "Energy refurbishment of the Italian residential building stock: energy and cost analysis through the application of the building typology," Energy Policy, Elsevier, vol. 105(C), pages 148-160.
    12. Sufyanullah, Khan & Ahmad, Khan Arshad & Sufyan Ali, Muhammad Abu, 2022. "Does emission of carbon dioxide is impacted by urbanization? An empirical study of urbanization, energy consumption, economic growth and carbon emissions - Using ARDL bound testing approach," Energy Policy, Elsevier, vol. 164(C).
    13. Byung-Lip Ahn & Ji-Woo Park & Seunghwan Yoo & Jonghun Kim & Hakgeun Jeong & Seung-Bok Leigh & Cheol-Yong Jang, 2015. "Synergetic Effect between Lighting Efficiency Enhancement and Building Energy Reduction Using Alternative Thermal Operating System of Indoor LED Lighting," Energies, MDPI, vol. 8(8), pages 1-13, August.
    14. Yupei Lai & Yutong Li & Xinyi Feng & Tao Ma, 2022. "Green retrofit of existing residential buildings in China: An investigation on residents’ perceptions," Energy & Environment, , vol. 33(2), pages 332-353, March.
    15. Jozef Švajlenka & Mária Kozlovská, 2021. "Factors Influencing the Sustainability of Wood-Based Constructions’ Use from the Perspective of Users," Sustainability, MDPI, vol. 13(23), pages 1-16, November.
    16. Wiethe, Christian & Wenninger, Simon, 2023. "The influence of building energy performance prediction accuracy on retrofit rates," Energy Policy, Elsevier, vol. 177(C).
    17. Di Turi, Silvia & Stefanizzi, Pietro, 2015. "Energy analysis and refurbishment proposals for public housing in the city of Bari, Italy," Energy Policy, Elsevier, vol. 79(C), pages 58-71.
    18. Haleh Boostani & Polat Hancer, 2018. "A Model for External Walls Selection in Hot and Humid Climates," Sustainability, MDPI, vol. 11(1), pages 1-23, December.
    19. Gan, Xiaolong & Liu, Lanchi & Wen, Tao & Webber, Ronald, 2022. "Modelling interrelationships between barriers to adopting green building technologies in China's rural housing via grey-DEMATEL," Technology in Society, Elsevier, vol. 70(C).
    20. Mata, Érika & Wanemark, Joel & Nik, Vahid M. & Sasic Kalagasidis, Angela, 2019. "Economic feasibility of building retrofitting mitigation potentials: Climate change uncertainties for Swedish cities," Applied Energy, Elsevier, vol. 242(C), pages 1022-1035.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:5:p:4058-:d:1079191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.