IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i4p3235-d1066317.html
   My bibliography  Save this article

Diffusion Behavior of VOC Molecules in Polyvinyl Chloride Investigated by Molecular Dynamics Simulation

Author

Listed:
  • Yun-Feng Mao

    (School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China)

  • Shun-Nan Long

    (School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Zhuo Li

    (State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China)

  • Wen-Quan Tao

    (State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
    Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

Due to the threats posed by many volatile organic compounds (VOCs) to human health in indoor spaces via air, the mass transfer characteristics of VOCs are of critical importance to the study of their mechanism and control. As a significant part of the mass transfer process, diffusion widely exists in emissions from floors (e.g., PVC floors) and in sorption in porous materials. Molecular simulation studies by can provide unparalleled insights into the molecular mechanisms of VOCs. We construct the detailed atomistic structures of PVC blend membranes to investigate the diffusion behavior of VOC molecules (n-hexane) in PVC by molecular dynamics (MD). The variation in the diffusion coefficient of n-hexane in PVC with respect to temperature is in line with Arrhenius’ law. The effect of temperature on the diffusion mechanism was investigated from the perspectives of free volume, cavity distribution and polymer chain mobility. It was found that the relationships between the diffusion coefficients of n-hexane in the polymer and the inverse fractional free volume are exponential and agree well with the free volume theory. Hopefully, this study will offer quantitative insights into the mass transport phenomena of VOCs within polymeric materials.

Suggested Citation

  • Yun-Feng Mao & Shun-Nan Long & Zhuo Li & Wen-Quan Tao, 2023. "Diffusion Behavior of VOC Molecules in Polyvinyl Chloride Investigated by Molecular Dynamics Simulation," IJERPH, MDPI, vol. 20(4), pages 1-13, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3235-:d:1066317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/4/3235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/4/3235/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Haixiang & Li, Xiaochun & Fang, Zhiming & Wei, Ning & Li, Qianshu, 2010. "Small-molecule gas sorption and diffusion in coal: Molecular simulation," Energy, Elsevier, vol. 35(7), pages 2939-2944.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhouhua Wang & Yun Li & Huang Liu & Fanhua Zeng & Ping Guo & Wei Jiang, 2017. "Study on the Adsorption, Diffusion and Permeation Selectivity of Shale Gas in Organics," Energies, MDPI, vol. 10(1), pages 1-15, January.
    2. Chen, Junqing & Jiang, Fujie & Cong, Qi & Pang, Xiongqi & Ma, Kuiyou & Shi, Kanyuan & Pang, Bo & Chen, Dongxia & Pang, Hong & Yang, Xiaobin & Wang, Yuying & Li, Bingyao, 2023. "Adsorption characteristics of shale gas in organic–inorganic slit pores," Energy, Elsevier, vol. 278(C).
    3. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    4. Yang, Xue & Chen, Zeqin & Liu, Xiaoqiang & Xue, Zhiyu & Yue, Fen & Wen, Junjie & Li, Meijun & Xue, Ying, 2022. "Correction of gas adsorption capacity in quartz nanoslit and its application in recovering shale gas resources by CO2 injection: A molecular simulation," Energy, Elsevier, vol. 240(C).
    5. Liu, Huang & Yao, Desong & Yang, Bowen & Li, Huashi & Guo, Ping & Du, Jianfen & Wang, Jian & Yang, Shuokong & Wen, Lianhui, 2022. "Experimental investigation on the mechanism of low permeability natural gas extraction accompanied by carbon dioxide sequestration," Energy, Elsevier, vol. 253(C).
    6. Huang, Haiping & Wang, Eric, 2020. "A laboratory investigation of the impact of solvent treatment on the permeability of bituminous coal from Western Canada with a focus on microbial in-situ processing of coals," Energy, Elsevier, vol. 210(C).
    7. Qi, Yingxia & Meng, Xiangqi & Mu, Defu & Sun, Yangliu & Zhang, Hua, 2016. "Study on mechanism and factors affecting the gas leakage through clearance seal at nano-level by molecular dynamics method," Energy, Elsevier, vol. 102(C), pages 252-259.
    8. Vishal, V. & Singh, Lokendra & Pradhan, S.P. & Singh, T.N. & Ranjith, P.G., 2013. "Numerical modeling of Gondwana coal seams in India as coalbed methane reservoirs substituted for carbon dioxide sequestration," Energy, Elsevier, vol. 49(C), pages 384-394.
    9. Bai, Yang & Lin, Hai-Fei & Li, Shu-Gang & Yan, Min & Long, Hang, 2021. "Molecular simulation of N2 and CO2 injection into a coal model containing adsorbed methane at different temperatures," Energy, Elsevier, vol. 219(C).
    10. Zhong, Jie & Wang, Pan & Zhang, Yang & Yan, Youguo & Hu, Songqing & Zhang, Jun, 2013. "Adsorption mechanism of oil components on water-wet mineral surface: A molecular dynamics simulation study," Energy, Elsevier, vol. 59(C), pages 295-300.
    11. Jing Liu & Shike Li & Yang Wang, 2019. "Molecular Dynamics Simulation of Diffusion Behavior of CH 4 , CO 2 , and N 2 in Mid-Rank Coal Vitrinite," Energies, MDPI, vol. 12(19), pages 1-21, September.
    12. Yang, Hongmin & Kang, Ningning & Chen, Xiangjun & Liu, Yuan, 2023. "Exploring the inhibitory effect of H2O on CO2/CH4 adsorption in coal: Insights from experimental and simulation approaches," Energy, Elsevier, vol. 284(C).
    13. Xu, Chao & Ma, Sibo & Wang, Kai & Yang, Gang & Zhou, Xin & Zhou, Aitao & Shu, Longyong, 2023. "Stress and permeability evolution of high-gassy coal seams for repeated mining," Energy, Elsevier, vol. 284(C).
    14. Li, Shugang & Yan, Dongjie & Yan, Min & Bai, Yang & Zhao, Bo & Long, Hang & Lin, Haifei, 2023. "Molecular simulation of alkyl glycoside surfactants with different concentrations inhibiting methane diffusion in coal," Energy, Elsevier, vol. 263(PB).
    15. Fu, Huang-Xi & Zhang, Li-Zhi & Xu, Jian-Chang & Cai, Rong-Rong, 2016. "A dual-scale analysis of a desiccant wheel with a novel organic–inorganic hybrid adsorbent for energy recovery," Applied Energy, Elsevier, vol. 163(C), pages 167-179.
    16. Zerong Li & Lei Yuan & Guodong Sun & Junchen Lv & Yi Zhang, 2021. "Experimental Determination of CO 2 Diffusion Coefficient in a Brine-Saturated Core Simulating Reservoir Condition," Energies, MDPI, vol. 14(3), pages 1-12, January.
    17. Lei Yuan & Changzhong Zhao & Yongsheng Xu & Yi Zhang, 2020. "Molecular Dynamics Simulation of CO 2 Diffusion in a Carbonated Water–Decane System," Energies, MDPI, vol. 13(22), pages 1-16, November.
    18. Li, Jiawei & Sun, Chenhao, 2022. "Molecular insights on competitive adsorption and enhanced displacement effects of CO2/CH4 in coal for low-carbon energy technologies," Energy, Elsevier, vol. 261(PB).
    19. Ahmadi, Mohammadali & Chen, Zhangxin, 2022. "Molecular dynamics simulation of oil detachment from hydrophobic quartz surfaces during steam-surfactant Co-injection," Energy, Elsevier, vol. 254(PC).
    20. Psaltis, Steven & Farrell, Troy & Burrage, Kevin & Burrage, Pamela & McCabe, Peter & Moroney, Timothy & Turner, Ian & Mazumder, Saikat, 2015. "Mathematical modelling of gas production and compositional shift of a CSG (coal seam gas) field: Local model development," Energy, Elsevier, vol. 88(C), pages 621-635.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3235-:d:1066317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.