IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p6031-d447269.html
   My bibliography  Save this article

Molecular Dynamics Simulation of CO 2 Diffusion in a Carbonated Water–Decane System

Author

Listed:
  • Lei Yuan

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China)

  • Changzhong Zhao

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China)

  • Yongsheng Xu

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China)

  • Yi Zhang

    (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China)

Abstract

Carbonated water injection (CWI) is a technology with significant sweep efficiency advantages in enhanced oil recovery (EOR), but the mechanism of the microscopic diffusion of CO 2 is still unclear. In this study, the diffusion mechanism of CO 2 from the aqueous phase to the oleic phase in a carbonated water (CW)–decane system was investigated by the molecular dynamics simulation method. This investigation also explored the diffusion capacity and interface properties of the CW–decane system. We found that the movement of CO 2 from the aqueous phase to the oleic phase can be divided into two processes: the accumulation behavior of CO 2 moving from the aqueous phase to the interface, and the dissolution behavior of CO 2 moving from the interface to the decane phase. The increase in the temperature and CO 2 concentration in carbonated water can improve the decane phase’s diffusion ability and reduce the water–decane interfacial tension. The difference in the interactions between water–CO 2 and decane–CO 2 provides a driving force for the diffusion of CO 2 between aqueous and oleic phase. The temperature increase intensifies the degree of diffusion and improves the diffusion rate of CO 2 from the aqueous phase to the oleic phase. The diffusion coefficient results show that CO 2 significantly enhances the oleic phase’s diffusion properties. In addition, the affinity of water for CO 2 is increased by the hydrogen bond, and it provides a mechanism for the accumulation behavior of CO 2 . Further, the temperature significantly improves the CO 2 diffusion ability at the interface, which promotes CO 2 leaving the interface and weakens the accumulation behavior. This work provides useful information for guiding carbonated water injection to improve the recovery mechanism of enhanced oil.

Suggested Citation

  • Lei Yuan & Changzhong Zhao & Yongsheng Xu & Yi Zhang, 2020. "Molecular Dynamics Simulation of CO 2 Diffusion in a Carbonated Water–Decane System," Energies, MDPI, vol. 13(22), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6031-:d:447269
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/6031/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/6031/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Haixiang & Li, Xiaochun & Fang, Zhiming & Wei, Ning & Li, Qianshu, 2010. "Small-molecule gas sorption and diffusion in coal: Molecular simulation," Energy, Elsevier, vol. 35(7), pages 2939-2944.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhouhua Wang & Yun Li & Huang Liu & Fanhua Zeng & Ping Guo & Wei Jiang, 2017. "Study on the Adsorption, Diffusion and Permeation Selectivity of Shale Gas in Organics," Energies, MDPI, vol. 10(1), pages 1-15, January.
    2. Chen, Junqing & Jiang, Fujie & Cong, Qi & Pang, Xiongqi & Ma, Kuiyou & Shi, Kanyuan & Pang, Bo & Chen, Dongxia & Pang, Hong & Yang, Xiaobin & Wang, Yuying & Li, Bingyao, 2023. "Adsorption characteristics of shale gas in organic–inorganic slit pores," Energy, Elsevier, vol. 278(C).
    3. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    4. Yang, Xue & Chen, Zeqin & Liu, Xiaoqiang & Xue, Zhiyu & Yue, Fen & Wen, Junjie & Li, Meijun & Xue, Ying, 2022. "Correction of gas adsorption capacity in quartz nanoslit and its application in recovering shale gas resources by CO2 injection: A molecular simulation," Energy, Elsevier, vol. 240(C).
    5. Liu, Huang & Yao, Desong & Yang, Bowen & Li, Huashi & Guo, Ping & Du, Jianfen & Wang, Jian & Yang, Shuokong & Wen, Lianhui, 2022. "Experimental investigation on the mechanism of low permeability natural gas extraction accompanied by carbon dioxide sequestration," Energy, Elsevier, vol. 253(C).
    6. Huang, Haiping & Wang, Eric, 2020. "A laboratory investigation of the impact of solvent treatment on the permeability of bituminous coal from Western Canada with a focus on microbial in-situ processing of coals," Energy, Elsevier, vol. 210(C).
    7. Qi, Yingxia & Meng, Xiangqi & Mu, Defu & Sun, Yangliu & Zhang, Hua, 2016. "Study on mechanism and factors affecting the gas leakage through clearance seal at nano-level by molecular dynamics method," Energy, Elsevier, vol. 102(C), pages 252-259.
    8. Vishal, V. & Singh, Lokendra & Pradhan, S.P. & Singh, T.N. & Ranjith, P.G., 2013. "Numerical modeling of Gondwana coal seams in India as coalbed methane reservoirs substituted for carbon dioxide sequestration," Energy, Elsevier, vol. 49(C), pages 384-394.
    9. Bai, Yang & Lin, Hai-Fei & Li, Shu-Gang & Yan, Min & Long, Hang, 2021. "Molecular simulation of N2 and CO2 injection into a coal model containing adsorbed methane at different temperatures," Energy, Elsevier, vol. 219(C).
    10. Yun-Feng Mao & Shun-Nan Long & Zhuo Li & Wen-Quan Tao, 2023. "Diffusion Behavior of VOC Molecules in Polyvinyl Chloride Investigated by Molecular Dynamics Simulation," IJERPH, MDPI, vol. 20(4), pages 1-13, February.
    11. Zhong, Jie & Wang, Pan & Zhang, Yang & Yan, Youguo & Hu, Songqing & Zhang, Jun, 2013. "Adsorption mechanism of oil components on water-wet mineral surface: A molecular dynamics simulation study," Energy, Elsevier, vol. 59(C), pages 295-300.
    12. Jing Liu & Shike Li & Yang Wang, 2019. "Molecular Dynamics Simulation of Diffusion Behavior of CH 4 , CO 2 , and N 2 in Mid-Rank Coal Vitrinite," Energies, MDPI, vol. 12(19), pages 1-21, September.
    13. Yang, Hongmin & Kang, Ningning & Chen, Xiangjun & Liu, Yuan, 2023. "Exploring the inhibitory effect of H2O on CO2/CH4 adsorption in coal: Insights from experimental and simulation approaches," Energy, Elsevier, vol. 284(C).
    14. Xu, Chao & Ma, Sibo & Wang, Kai & Yang, Gang & Zhou, Xin & Zhou, Aitao & Shu, Longyong, 2023. "Stress and permeability evolution of high-gassy coal seams for repeated mining," Energy, Elsevier, vol. 284(C).
    15. Li, Shugang & Yan, Dongjie & Yan, Min & Bai, Yang & Zhao, Bo & Long, Hang & Lin, Haifei, 2023. "Molecular simulation of alkyl glycoside surfactants with different concentrations inhibiting methane diffusion in coal," Energy, Elsevier, vol. 263(PB).
    16. Fu, Huang-Xi & Zhang, Li-Zhi & Xu, Jian-Chang & Cai, Rong-Rong, 2016. "A dual-scale analysis of a desiccant wheel with a novel organic–inorganic hybrid adsorbent for energy recovery," Applied Energy, Elsevier, vol. 163(C), pages 167-179.
    17. Zerong Li & Lei Yuan & Guodong Sun & Junchen Lv & Yi Zhang, 2021. "Experimental Determination of CO 2 Diffusion Coefficient in a Brine-Saturated Core Simulating Reservoir Condition," Energies, MDPI, vol. 14(3), pages 1-12, January.
    18. Li, Jiawei & Sun, Chenhao, 2022. "Molecular insights on competitive adsorption and enhanced displacement effects of CO2/CH4 in coal for low-carbon energy technologies," Energy, Elsevier, vol. 261(PB).
    19. Ahmadi, Mohammadali & Chen, Zhangxin, 2022. "Molecular dynamics simulation of oil detachment from hydrophobic quartz surfaces during steam-surfactant Co-injection," Energy, Elsevier, vol. 254(PC).
    20. Psaltis, Steven & Farrell, Troy & Burrage, Kevin & Burrage, Pamela & McCabe, Peter & Moroney, Timothy & Turner, Ian & Mazumder, Saikat, 2015. "Mathematical modelling of gas production and compositional shift of a CSG (coal seam gas) field: Local model development," Energy, Elsevier, vol. 88(C), pages 621-635.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6031-:d:447269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.