IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v97y2018icp259-275.html
   My bibliography  Save this article

Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: Issues and prospects

Author

Listed:
  • Humphrey, Uguru Edwin
  • Khandaker, Mayeen Uddin

Abstract

This paper presented a review on the past, present and the future of thorium fuel cycle. The aim of this study is to evaluate the developments in thorium fuel cycle, looking at the prospects and drawbacks on the possibility of thorium-based nuclear fuel for commercial reactors realising the increasing challenges of uranium-based nuclear fuel. The initial interest on thorium-based nuclear fuel and why it was abandoned at the early stage of nuclear technology were considered. Also, the reasons behind the present renewed interest on the viability of thorium fuel cycle as a valuable alternative to the conventional uranium-based fuel were studied. Thorium abundance, its physical, chemical and neutronic properties were evaluated in comparison to the uranium fuel cycle to determine thorium fuel sustainability for next generation nuclear industry. In this study, it was found that thorium fuel is three to four times more abundant, has higher conductivity, high melting temperature, low expansivity and more proliferation resistant compared to uranium fuel. The possible application and related challenges of thorium fuels in different reactor types and designs such as light water reactors (LWRs), high temperature gas-cooled reactors (HTGRs), heavy water reactors (HWRs), molten salt reactors (MSRs) and accelerator driven system reactors (ADSRs) were reviewed. The findings indicate that thorium fuel cycle can be used in the currently dominant LWRs designs in the nuclear industry with little technical modification, and also in other reactor types under investigation for future application especially molten salt breeder reactors, fast reactors and accelerator driven system reactors. Finally, this review made some recommendations on the short-term and long–term applications of thorium-based nuclear fuel cycle, and the issues that must be addressed before using thorium fuel for commercial reactor operations.

Suggested Citation

  • Humphrey, Uguru Edwin & Khandaker, Mayeen Uddin, 2018. "Viability of thorium-based nuclear fuel cycle for the next generation nuclear reactor: Issues and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 259-275.
  • Handle: RePEc:eee:rensus:v:97:y:2018:i:c:p:259-275
    DOI: 10.1016/j.rser.2018.08.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118305951
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.08.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Chuanwang & Zhu, Xiting & Meng, Xiaochun, 2016. "Post-Fukushima public acceptance on resuming the nuclear power program in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 685-694.
    2. Abram, Tim & Ion, Sue, 2008. "Generation-IV nuclear power: A review of the state of the science," Energy Policy, Elsevier, vol. 36(12), pages 4323-4330, December.
    3. Kessides, Ioannis N., 2012. "The future of the nuclear industry reconsidered: Risks, uncertainties, and continued promise," Energy Policy, Elsevier, vol. 48(C), pages 185-208.
    4. Latré, Edwin & Perko, Tanja & Thijssen, Peter, 2017. "Public opinion change after the Fukushima nuclear accident: The role of national context revisited," Energy Policy, Elsevier, vol. 104(C), pages 124-133.
    5. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2013. "Evaluating options for the future energy mix of Japan after the Fukushima nuclear crisis," Energy Policy, Elsevier, vol. 56(C), pages 418-424.
    6. Ming, Zeng & Yingxin, Liu & Shaojie, Ouyang & Hui, Shi & Chunxue, Li, 2016. "Nuclear energy in the Post-Fukushima Era: Research on the developments of the Chinese and worldwide nuclear power industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 147-156.
    7. Hayashi, Masatsugu & Hughes, Larry, 2013. "The Fukushima nuclear accident and its effect on global energy security," Energy Policy, Elsevier, vol. 59(C), pages 102-111.
    8. Rowinski, Marcin Karol & White, Timothy John & Zhao, Jiyun, 2015. "Small and Medium sized Reactors (SMR): A review of technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 643-656.
    9. Stephen F. Ashley & Geoffrey T. Parks & William J. Nuttall & Colin Boxall & Robin W. Grimes, 2012. "Thorium fuel has risks," Nature, Nature, vol. 492(7427), pages 31-33, December.
    10. Schaffer, Marvin Baker, 2013. "Abundant thorium as an alternative nuclear fuel," Energy Policy, Elsevier, vol. 60(C), pages 4-12.
    11. Schaffer, Marvin Baker, 2011. "Toward a viable nuclear waste disposal program," Energy Policy, Elsevier, vol. 39(3), pages 1382-1388, March.
    12. Kessides, Ioannis N., 2012. "The future of the Nuclear industry reconsidered : risks, uncertainties, and continued potential," Policy Research Working Paper Series 6112, The World Bank.
    13. Locatelli, Giorgio & Mancini, Mauro & Todeschini, Nicola, 2013. "Generation IV nuclear reactors: Current status and future prospects," Energy Policy, Elsevier, vol. 61(C), pages 1503-1520.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shang, Delei & Geissler, Bernhard & Mew, Michael & Satalkina, Liliya & Zenk, Lukas & Tulsidas, Harikrishnan & Barker, Lee & El-Yahyaoui, Adil & Hussein, Ahmed & Taha, Mohamed & Zheng, Yanhua & Wang, M, 2021. "Unconventional uranium in China's phosphate rock: Review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    2. Vladimir M. Cvetković & Adem Öcal & Yuliya Lyamzina & Eric K. Noji & Neda Nikolić & Goran Milošević, 2021. "Nuclear Power Risk Perception in Serbia: Fear of Exposure to Radiation vs. Social Benefits," Energies, MDPI, vol. 14(9), pages 1-19, April.
    3. Contu, Davide & Strazzera, Elisabetta & Mourato, Susana, 2016. "Modeling individual preferences for energy sources: The case of IV generation nuclear energy in Italy," Ecological Economics, Elsevier, vol. 127(C), pages 37-58.
    4. Stephen Thomas & M. V. Ramana, 2022. "A hopeless pursuit? National efforts to promote small modular nuclear reactors and revive nuclear power," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(4), July.
    5. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2015. "Global zero-carbon energy pathways using viable mixes of nuclear and renewables," Applied Energy, Elsevier, vol. 143(C), pages 451-459.
    6. Jaeyoung Lim & Kuk-Kyoung Moon, 2021. "Can Political Trust Weaken the Relationship between Perceived Environmental Threats and Perceived Nuclear Threats? Evidence from South Korea," IJERPH, MDPI, vol. 18(18), pages 1-13, September.
    7. Youngho CHANG & Yanfei LI, 2014. "Non-renewable Resources in Asian Economies: Perspective of Availability, Applicability Acceptability, and Affordability," Working Papers DP-2014-04, Economic Research Institute for ASEAN and East Asia (ERIA).
    8. KAWAGUCHI, Daiji & 川口, 大司 & YUKUTAKE, Norifumi & 行武, 憲史, 2014. "Estimating the Residential Land Damage of the Fukushima Accident," Discussion Papers 2014-18, Graduate School of Economics, Hitotsubashi University.
    9. Brookes, Naomi J. & Locatelli, Giorgio, 2015. "Power plants as megaprojects: Using empirics to shape policy, planning, and construction management," Utilities Policy, Elsevier, vol. 36(C), pages 57-66.
    10. Carless, Travis S. & Talabi, Sola M. & Fischbeck, Paul S., 2019. "Risk and regulatory considerations for small modular reactor emergency planning zones based on passive decontamination potential," Energy, Elsevier, vol. 167(C), pages 740-756.
    11. Lina Escobar Rangel & François Lévêque, 2012. "Revisiting the cost escalation curse of nuclear power: New lessons from the French experience," Working Papers hal-00780566, HAL.
    12. Hu, Xiaoli & Zhu, Weiwei & Wei, Jiuchang, 2021. "Effects of information strategies on public acceptance of nuclear energy," Energy, Elsevier, vol. 231(C).
    13. Elaheh Shobeiri & Filippo Genco & Daniel Hoornweg & Akira Tokuhiro, 2023. "Small Modular Reactor Deployment and Obstacles to Be Overcome," Energies, MDPI, vol. 16(8), pages 1-19, April.
    14. Hartmann, Patrick & Apaolaza, Vanessa & D'Souza, Clare & Echebarria, Carmen & Barrutia, Jose M., 2013. "Nuclear power threats, public opposition and green electricity adoption: Effects of threat belief appraisal and fear arousal," Energy Policy, Elsevier, vol. 62(C), pages 1366-1376.
    15. Fumihiko Matsubara, 2019. "The Landscape of Business Growth for Oil and Gas Upstream Companies: A case from Japan," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 86-94.
    16. Huhtala, Anni & Remes, Piia, 2017. "Quantifying the social costs of nuclear energy: Perceived risk of accident at nuclear power plants," Energy Policy, Elsevier, vol. 105(C), pages 320-331.
    17. Jonas Siegel & Elisabeth A. Gilmore & Nancy Gallagher & Steve Fetter, 2018. "An Expert Elicitation of the Proliferation Resistance of Using Small Modular Reactors (SMR) for the Expansion of Civilian Nuclear Systems," Risk Analysis, John Wiley & Sons, vol. 38(2), pages 242-254, February.
    18. Bjoern Hagen & Adenike Opejin & K. David Pijawka, 2022. "Risk Perceptions and Amplification Effects over Time: Evaluating Fukushima Longitudinal Surveys," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    19. Verbruggen, Aviel & Laes, Erik & Lemmens, Sanne, 2014. "Assessment of the actual sustainability of nuclear fission power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 16-28.
    20. Wang, Jing & Li, Yazhou & Wu, Jianlin & Gu, Jibao & Xu, Shuo, 2020. "Environmental beliefs and public acceptance of nuclear energy in China: A moderated mediation analysis," Energy Policy, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:97:y:2018:i:c:p:259-275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.