IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i3p1973-d1042903.html
   My bibliography  Save this article

Correlation between UV Index, Temperature and Humidity with Respect to Incidence and Severity of COVID 19 in Spain

Author

Listed:
  • Juan Blas Pérez-Gilaberte

    (Department of Internal Medicine, Miguel Servet University Hospital, IIS Aragon, 50009 Zaragoza, Spain)

  • Natalia Martín-Iranzo

    (Medical School, University of Zaragoza, 50009 Zaragoza, Spain)

  • José Aguilera

    (Photobiological Dermatology Laboratory Medical Research Center, Department of Dermatology and Medicine, School of Medicine, Campus Universitario de Teatinos S/N, 29071 Málaga, Spain)

  • Manuel Almenara-Blasco

    (Department of Dermatology, Miguel Servet University Hospital, IIS Aragon, 50009 Zaragoza, Spain)

  • María Victoria de Gálvez

    (Photobiological Dermatology Laboratory Medical Research Center, Department of Dermatology and Medicine, School of Medicine, Campus Universitario de Teatinos S/N, 29071 Málaga, Spain)

  • Yolanda Gilaberte

    (Department of Dermatology, Miguel Servet University Hospital, IIS Aragon, 50009 Zaragoza, Spain)

Abstract

Background: Various studies support the inverse correlation between solar exposure and Coronavirus SARS-CoV-2 infection. In Spain, from the Canary Islands to the northern part of the country, the global incidence of COVID-19 is different depending on latitude, which could be related to different meteorological conditions such as temperature, humidity, and ultraviolet index (UVI). The objective of the present work was to analyze the association between UVI, other relevant environmental factors such as temperature and humidity, and the incidence, severity, and mortality of COVID-19 at different latitudes in Spain. Methods: An observational prospective study was conducted, recording the numbers of new cases, hospitalizations, patients in critical units, mortality rates, and annual variations related to UVI, temperature, and humidity in five different provinces of Spain from January 2020 to February 2021. Results: Statistically significant inverse correlations (Spearman coefficients) were observed between UVI, temperature, annual changes, and the incidence of COVID-19 cases at almost all latitudes. Conclusion: Higher ultraviolet radiation levels and mean temperatures could contribute to reducing COVID-19 incidence, hospitalizations, and mortality.

Suggested Citation

  • Juan Blas Pérez-Gilaberte & Natalia Martín-Iranzo & José Aguilera & Manuel Almenara-Blasco & María Victoria de Gálvez & Yolanda Gilaberte, 2023. "Correlation between UV Index, Temperature and Humidity with Respect to Incidence and Severity of COVID 19 in Spain," IJERPH, MDPI, vol. 20(3), pages 1-13, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:1973-:d:1042903
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/3/1973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/3/1973/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kurubaran Ganasegeran & Mohd Fadzly Amar Jamil & Alan Swee Hock Ch’ng & Irene Looi & Kalaiarasu M. Peariasamy, 2021. "Influence of Population Density for COVID-19 Spread in Malaysia: An Ecological Study," IJERPH, MDPI, vol. 18(18), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alois Pichler & Dana Uhlig, 2023. "Mortality in Germany during the COVID-19 Pandemic," IJERPH, MDPI, vol. 20(20), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nuur Hafizah Md Iderus & Sarbhan Singh Lakha Singh & Sumarni Mohd Ghazali & Cheong Yoon Ling & Tan Cia Vei & Ahmed Syahmi Syafiq Md Zamri & Nadhar Ahmad Jaafar & Qistina Ruslan & Nur Huda Ahmad Jaghfa, 2022. "Correlation between Population Density and COVID-19 Cases during the Third Wave in Malaysia: Effect of the Delta Variant," IJERPH, MDPI, vol. 19(12), pages 1-17, June.
    2. Kurubaran Ganasegeran & Mohd Fadzly Amar Jamil & Maheshwara Rao Appannan & Alan Swee Hock Ch’ng & Irene Looi & Kalaiarasu M. Peariasamy, 2022. "Spatial Dynamics and Multiscale Regression Modelling of Population Level Indicators for COVID-19 Spread in Malaysia," IJERPH, MDPI, vol. 19(4), pages 1-13, February.
    3. Zijing Ye & Ruisi Li & Jing Wu, 2022. "Dynamic Demand Evaluation of COVID-19 Medical Facilities in Wuhan Based on Public Sentiment," IJERPH, MDPI, vol. 19(12), pages 1-22, June.
    4. Antonios Kalampakas & Sovan Samanta & Jayanta Bera & Kinkar Chandra Das, 2024. "A Fuzzy Logic Inference Model for the Evaluation of the Effect of Extrinsic Factors on the Transmission of Infectious Diseases," Mathematics, MDPI, vol. 12(5), pages 1-18, February.
    5. Shirley Gee Hoon Tang & Muhamad Haziq Hasnul Hadi & Siti Rosilah Arsad & Pin Jern Ker & Santhi Ramanathan & Nayli Aliah Mohd Afandi & Madihah Mohd Afzal & Mei Wyin Yaw & Prajindra Sankar Krishnan & Ch, 2022. "Prerequisite for COVID-19 Prediction: A Review on Factors Affecting the Infection Rate," IJERPH, MDPI, vol. 19(20), pages 1-38, October.
    6. Sourya Subhra Nasker & Ananya Nanda & Balamurugan Ramadass & Sasmita Nayak, 2021. "Epidemiological Analysis of SARS-CoV-2 Transmission Dynamics in the State of Odisha, India: A Yearlong Exploratory Data Analysis," IJERPH, MDPI, vol. 18(21), pages 1-13, October.
    7. Delima Istio Prawiradhani Putri & Dwi Agustian & Lika Apriani & Ridwan Ilyas, 2023. "Spatial and Temporal Analysis of COVID-19 Cases in West Java, Indonesia and Its Influencing Factors," IJERPH, MDPI, vol. 20(4), pages 1-14, February.
    8. Amal Najihah Muhamad Nor & Rohazaini Muhammad Jamil & Hasifah Abdul Aziz & Muhamad Azahar Abas & Kamarul Ariffin Hambali & Nor Hizami Hassin & Muhammad Firdaus Abdul Karim & Siti Aisyah Nawawi & Aaina, 2022. "Spatial Distribution of COVID-19 Infected Cases in Kelantan, Malaysia," Sustainability, MDPI, vol. 14(21), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:1973-:d:1042903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.