IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i11p5944-d1154747.html
   My bibliography  Save this article

Gas Phase Emissions of Volatile Organic Compounds Arising from the Application of Sunscreens

Author

Listed:
  • Amber M. Yeoman

    (Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, UK)

  • Marvin Shaw

    (National Centre for Atmospheric Science, University of York, York YO10 5DD, UK)

  • Martyn Ward

    (National Centre for Atmospheric Science, University of York, York YO10 5DD, UK)

  • Lyndsay Ives

    (Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, UK)

  • Stephen J. Andrews

    (National Centre for Atmospheric Science, University of York, York YO10 5DD, UK)

  • Alastair C. Lewis

    (National Centre for Atmospheric Science, University of York, York YO10 5DD, UK)

Abstract

The speciation of volatile organic compounds (VOCs) emitted from personal care products (PCPs) is complex and contributes to poor air quality and health risks to users via the inhalation exposure pathway. Detailed VOC emission profiles were generated for 26 sunscreen products; consequently, variability was observed between products, even though they were all designed for the same purpose. Some were found to contain fragrance compounds not labelled on their ingredients list. Five contaminant VOCs were identified (benzene, toluene, ethylbenzene, o-xylene, and p-xylene); headspace sampling of an additional 18 randomly selected products indicated that ethanol originating from fossil petroleum was a potential source. The gas phase emission rates of the VOCs were quantified for 15 of the most commonly emitted species using SIFT-MS. A wide range of emission rates were observed between the products. Usage estimates were made based on the recommended dose per body surface area, for which the total mass of VOCs emitted from one full-body application dose was in the range of 1.49 × 10 3 –4.52 × 10 3 mg and 1.35 × 10 2 –4.11 × 10 2 mg for facial application (men aged 16+; children aged 2–4). Depending on age and sex, an estimated 9.8–30 mg of ethanol is inhaled from one facial application of sunscreen.

Suggested Citation

  • Amber M. Yeoman & Marvin Shaw & Martyn Ward & Lyndsay Ives & Stephen J. Andrews & Alastair C. Lewis, 2023. "Gas Phase Emissions of Volatile Organic Compounds Arising from the Application of Sunscreens," IJERPH, MDPI, vol. 20(11), pages 1-17, May.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:11:p:5944-:d:1154747
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/11/5944/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/11/5944/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna Ruth Pickett & Michelle L. Bell, 2011. "Assessment of Indoor Air Pollution in Homes with Infants," IJERPH, MDPI, vol. 8(12), pages 1-19, December.
    2. Raquel Rodrigues dos Santos & João Gregório & Liliana Castanheira & Ana S. Fernandes, 2020. "Exploring Volatile Organic Compound Exposure and Its Association with Wheezing in Children under 36 Months: A Cross-Sectional Study in South Lisbon, Portugal," IJERPH, MDPI, vol. 17(18), pages 1-12, September.
    3. Kumar, Santosh & Singh, Neetu & Prasad, Ram, 2010. "Anhydrous ethanol: A renewable source of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1830-1844, September.
    4. Peerawat Wongsurakul & Mutsee Termtanun & Worapon Kiatkittipong & Jun Wei Lim & Kunlanan Kiatkittipong & Prasert Pavasant & Izumi Kumakiri & Suttichai Assabumrungrat, 2022. "Comprehensive Review on Potential Contamination in Fuel Ethanol Production with Proposed Specific Guideline Criteria," Energies, MDPI, vol. 15(9), pages 1-53, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Vilčeková & Ilija Zoran Apostoloski & Ľudmila Mečiarová & Eva Krídlová Burdová & Jozef Kiseľák, 2017. "Investigation of Indoor Air Quality in Houses of Macedonia," IJERPH, MDPI, vol. 14(1), pages 1-12, January.
    2. Małgorzata Hawrot-Paw & Aleksander Stańczuk, 2022. "From Waste Biomass to Cellulosic Ethanol by Separate Hydrolysis and Fermentation (SHF) with Trichoderma viride," Sustainability, MDPI, vol. 15(1), pages 1-10, December.
    3. Musaab O. El-Faroug & Fuwu Yan & Maji Luo & Richard Fiifi Turkson, 2016. "Spark Ignition Engine Combustion, Performance and Emission Products from Hydrous Ethanol and Its Blends with Gasoline," Energies, MDPI, vol. 9(12), pages 1-24, November.
    4. Raquel Rodrigues dos Santos & João Gregório & Liliana Castanheira & Ana S. Fernandes, 2020. "Exploring Volatile Organic Compound Exposure and Its Association with Wheezing in Children under 36 Months: A Cross-Sectional Study in South Lisbon, Portugal," IJERPH, MDPI, vol. 17(18), pages 1-12, September.
    5. Aditiya, H.B. & Mahlia, T.M.I. & Chong, W.T. & Nur, Hadi & Sebayang, A.H., 2016. "Second generation bioethanol production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 631-653.
    6. Fadlilatul Taufany & Nonot Soewarno & Koko Yuwono & Dimas Ardiyanta & Melvina Eliana & Indi Raisa Girsang, 2015. "Feed Plate and Feed Adsorbent Temperature Optimisation of Distillation – Adsorption Process to Produce Absolute Ethanol," Modern Applied Science, Canadian Center of Science and Education, vol. 9(7), pages 140-140, July.
    7. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Tgarguifa, Ahmed & Abderafi, Souad & Bounahmidi, Tijani, 2018. "Energy efficiency improvement of a bioethanol distillery, by replacing a rectifying column with a pervaporation unit," Renewable Energy, Elsevier, vol. 122(C), pages 239-250.
    9. Carlos Alberto Torres Cantero & Guadalupe Lopez Lopez & Victor M. Alvarado & Ricardo F. Escobar Jimenez & Jesse Y. Rumbo Morales & Eduardo M. Sanchez Coronado, 2017. "Control Structures Evaluation for a Salt Extractive Distillation Pilot Plant: Application to Bio-Ethanol Dehydration," Energies, MDPI, vol. 10(9), pages 1-29, August.
    10. Ashraf Elfasakhany, 2021. "State of Art of Using Biofuels in Spark Ignition Engines," Energies, MDPI, vol. 14(3), pages 1-26, February.
    11. Zhenbin Chen & Jiaojun Deng & Haisheng Zhen & Chenyu Wang & Li Wang, 2022. "Experimental Investigation of Hydrous Ethanol Gasoline on Engine Noise, Cyclic Variations and Combustion Characteristics," Energies, MDPI, vol. 15(5), pages 1-17, February.
    12. Saad Ahmad & Ali Turab Jafry & Muteeb ul Haq & Naseem Abbas & Huma Ajab & Arif Hussain & Uzair Sajjad, 2023. "Performance and Emission Characteristics of Second-Generation Biodiesel with Oxygenated Additives," Energies, MDPI, vol. 16(13), pages 1-33, July.
    13. Che Mat, S. & Idroas, M.Y. & Teoh, Y.H. & Hamid, M.F. & Sharudin, H. & Pahmi, M.A.A.H., 2022. "Optimization of ternary blends among refined palm oil-hexanol-melaleuca cajuputi oil and engine emissions analysis of the blends," Renewable Energy, Elsevier, vol. 196(C), pages 451-461.
    14. Kun-Ho Chen & Yei-Chin Chao, 2019. "Characterization of Performance of Short Stroke Engines with Valve Timing for Blended Bioethanol Internal Combustion," Energies, MDPI, vol. 12(4), pages 1-13, February.
    15. Sotiris Vardoulakis & Evanthia Giagloglou & Susanne Steinle & Alice Davis & Anne Sleeuwenhoek & Karen S. Galea & Ken Dixon & Joanne O. Crawford, 2020. "Indoor Exposure to Selected Air Pollutants in the Home Environment: A Systematic Review," IJERPH, MDPI, vol. 17(23), pages 1-24, December.
    16. Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2016. "Review on bioethanol as alternative fuel for spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 820-835.
    17. Malik, Arunima & Lenzen, Manfred & Ely, Rômulo Neves & Dietzenbacher, Erik, 2014. "Simulating the impact of new industries on the economy: The case of biorefining in Australia," Ecological Economics, Elsevier, vol. 107(C), pages 84-93.
    18. E, Jiaqiang & Zhou, Haiyun & Kou, Chuanfu & Feng, Changlin & Zou, Zeyu, 2024. "Effect analysis on the hydrocarbon adsorption performance enhancement of the different zeolite molecular sieves in the gasoline engine under the cold start process," Energy, Elsevier, vol. 305(C).
    19. Tgarguifa, Ahmed & Abderafi, Souad & Bounahmidi, Tijani, 2017. "Energetic optimization of Moroccan distillery using simulation and response surface methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 415-425.
    20. Masum, B.M. & Masjuki, H.H. & Kalam, M.A. & Rizwanul Fattah, I.M. & Palash, S.M. & Abedin, M.J., 2013. "Effect of ethanol–gasoline blend on NOx emission in SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 209-222.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:11:p:5944-:d:1154747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.