IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2022i1p451-d1016859.html
   My bibliography  Save this article

A Comprehensive Evaluation of Food Security in China and Its Obstacle Factors

Author

Listed:
  • Yan Zhang

    (School of Public Policy and Administration, Nanchang University, Nanchang 330031, China
    Gongqing Institute of Science and Technology, Jiujiang 332020, China)

  • Xiaoyong Lu

    (School of Public Policy and Administration, Nanchang University, Nanchang 330031, China
    Gongqing Institute of Science and Technology, Jiujiang 332020, China)

Abstract

China’s food security has attracted global attention as the various drivers of its instability and uncertainty have intensified. This study developed a new framework for food security evaluation in China by analyzing its availability, distribution, utilization, vulnerability, sustainability, and regulation. The entropy weight method (EWM) and the matter–element extension model (MEEM) were combined to examine China’s food security status between 2001 and 2020. Additionally, an obstacle degree model (ODM) was used to investigate the key factors functioning as obstacles to food security. The results show that China’s overall food security improved greatly but experienced a slight downward trend in 2003. The main obstacles initially entailed grain distribution but then spread to vulnerability- and sustainability-related issues. Ultimately, the key factors restricting China’s food security were the amount of fertilizer application per unit sown area (AFA) and the grain self-sufficiency rate (GSR). The next 40 years could be the most critical period for ensuring China’s food security, which incorporates demographic, climate change, and resource shortage factors. China appears to be implementing its national strategies through sustainable farmland use and agricultural technology innovation to facilitate the high-quality development of its grain industries and strengthen its food security. This study provides an overall picture of China’s food security and can serve as a reference for those concerned with China’s future national security.

Suggested Citation

  • Yan Zhang & Xiaoyong Lu, 2022. "A Comprehensive Evaluation of Food Security in China and Its Obstacle Factors," IJERPH, MDPI, vol. 20(1), pages 1-17, December.
  • Handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:451-:d:1016859
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/1/451/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/1/451/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng Han & Shengbo Chen & Yan Yu & Zhengyuan Xu & Bingxue Zhu & Xitong Xu & Zibo Wang, 2021. "Evaluation of Agricultural Land Suitability Based on RS, AHP, and MEA: A Case Study in Jilin Province, China," Agriculture, MDPI, vol. 11(4), pages 1-23, April.
    2. Qinglong Ding & Yang Chen & Lingtong Bu & Yanmei Ye, 2021. "Multi-Scenario Analysis of Habitat Quality in the Yellow River Delta by Coupling FLUS with InVEST Model," IJERPH, MDPI, vol. 18(5), pages 1-19, March.
    3. Asad Sarwar Qureshi & Chris Perry, 2021. "Managing Water and Salt for Sustainable Agriculture in the Indus Basin of Pakistan," Sustainability, MDPI, vol. 13(9), pages 1-14, May.
    4. Mohamed Esham & Brent Jacobs & Hewage Sunith Rohitha Rosairo & Balde Boubacar Siddighi, 2018. "Climate change and food security: a Sri Lankan perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1017-1036, June.
    5. Lu, Shibao & Bai, Xiao & Li, Wei & Wang, Ning, 2019. "Impacts of climate change on water resources and grain production," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 76-84.
    6. El Houssine Bartali & Mohamed Boutfirass & Yigezu Atnafe Yigezu & Abdoul Aziz Niane & Mohamed Boughlala & Mohammed Belmakki & Habib Halila, 2022. "Estimates of Food Losses and Wastes at Each Node of the Wheat Value Chain in Morocco: Implications on Food and Energy Security, Natural Resources, and Greenhouse Gas Emissions," Sustainability, MDPI, vol. 14(24), pages 1-26, December.
    7. Wenbin Wu & Peng Yang & Huajun Tang & Liangzhi You & Qingbo Zhou & Zhongxin Chen & Ryosuke Shibasaki, 2011. "Global-scale assessment of potential future risks of food insecurity," Journal of Risk Research, Taylor & Francis Journals, vol. 14(9), pages 1143-1160, October.
    8. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dian Charity Hidayat & Kosuke Mizuno & Chairil Abdini Abidin Said & Herdis Herdiansyah, 2023. "Implementation Framework for Transformation of Peat Ecosystems to Support Food Security," Agriculture, MDPI, vol. 13(2), pages 1-17, February.
    2. Mina Kovljenić & Bojan Matkovski & Danilo Đokić, 2024. "Competitiveness and Cereal Self-Sufficiency in Western Balkan Countries," Agriculture, MDPI, vol. 14(9), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    2. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    5. Zhang, Shulin & Su, Xiaoling & Singh, Vijay P & Ayantobo, Olusola Olaitan & Xie, Juan, 2018. "Logarithmic Mean Divisia Index (LMDI) decomposition analysis of changes in agricultural water use: a case study of the middle reaches of the Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 208(C), pages 422-430.
    6. El-Saied E. Metwaly & Hatim M. Al-Yasi & Esmat F. Ali & Hamada A. Farouk & Saad Farouk, 2022. "Deteriorating Harmful Effects of Drought in Cucumber by Spraying Glycinebetaine," Agriculture, MDPI, vol. 12(12), pages 1-16, December.
    7. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    8. Penglong Wang & Yao Wei & Fanglei Zhong & Xiaoyu Song & Bao Wang & Qinhua Wang, 2022. "Evaluation of Agricultural Water Resources Carrying Capacity and Its Influencing Factors: A Case Study of Townships in the Arid Region of Northwest China," Agriculture, MDPI, vol. 12(5), pages 1-24, May.
    9. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    10. Dong Chen & Rongrong Liu & Maoxian Zhou, 2023. "Delineation of Urban Growth Boundary Based on Habitat Quality and Carbon Storage: A Case Study of Weiyuan County in Gansu, China," Land, MDPI, vol. 12(5), pages 1-17, May.
    11. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    12. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    13. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    14. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    15. Li, Zhi & Fang, Gonghuan & Chen, Yaning & Duan, Weili & Mukanov, Yerbolat, 2020. "Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming," Agricultural Water Management, Elsevier, vol. 231(C).
    16. Miodrag Tolimir & Branka Kresović & Katarina Gajić & Violeta Anđelković & Milan Brankov & Marijana Dugalić & Boško Gajić, 2024. "Integrated effect of irrigation rate and plant density on yield, yield components and water use efficiency of maize," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(8), pages 475-482.
    17. Tiantian Ma & Qingbai Hu & Changle Wang & Jungang Lv & Changhong Mi & Rongguang Shi & Xiaoli Wang & Yanying Yang & Wenhao Wu, 2022. "Exploring the Relationship between Ecosystem Services under Different Socio-Economic Driving Degrees," IJERPH, MDPI, vol. 19(23), pages 1-17, December.
    18. Zhuohui Yu & Shiping Mao & Qingning Lin, 2022. "Has China’s Carbon Emissions Trading Pilot Policy Improved Agricultural Green Total Factor Productivity?," Agriculture, MDPI, vol. 12(9), pages 1-21, September.
    19. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Jiang, 2020. "Optimization of sustainable bioenergy production considering energy-food-water-land nexus and livestock manure under uncertainty," Agricultural Systems, Elsevier, vol. 184(C).
    20. Song, Yuegang & Zhang, Bicheng & Wang, Jianhua & Kwek, Keh, 2022. "The impact of climate change on China's agricultural green total factor productivity," Technological Forecasting and Social Change, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:451-:d:1016859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.