IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i7p4089-d783018.html
   My bibliography  Save this article

Succession and Driving Factors of Periphytic Community in the Middle Route Project of South-to-North Water Division (Henan, China)

Author

Listed:
  • Xiaonuo Chen

    (International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China)

  • Xiaojun Wang

    (Qushou Branch Bureau of Construction and Administration Bureau of South-to-North Water Division Project, Nanyang 473000, China)

  • Yuying Li

    (International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China)

  • Yinlei Yao

    (International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China)

  • Yun Zhang

    (International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China)

  • Yeqing Jiang

    (International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China)

  • Xiaohui Lei

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Han Liu

    (International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China)

  • Naicheng Wu

    (International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China
    Department of Hydrology and Water Resources Management, Kiel University, 24098 Kiel, Germany)

  • Nicola Fohrer

    (International Joint Laboratory of Watershed Ecological Security and Collaborative Innovation Center of Water Security for Water Source Region of Middle Route Project of South-North Water Diversion in Henan Province, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China
    Department of Hydrology and Water Resources Management, Kiel University, 24098 Kiel, Germany)

Abstract

The Middle Route Project of the South-to-North Water Diversion is an artificially independent system that does not connect to other surface waters. Excessive periphyton proliferation causes a series of environmental problems in the canal. In this study, the periphyton community and environmental factors on the left and right banks of the canal in the algal growing area were investigated and sampled six times (June, September, and November of 2019 and 2020). The succession pattern of the attached organism community in the artificial canal was analyzed, and the key factors affecting the algal community were analyzed using RDA and GAM. The results showed that the seasonal variability of the environmental factors was more significant than the spatial variability. A total of 114 taxa of periphytic algae were found, belonging to seven phyla and 69 genera, and mainly composed of Bacillariophyta. Species richness was ranked as Bacillariophyta (60 taxa), Chlorophyta (31 taxa) and Cyanobacteria (15 taxa), and higher in autumn than in summer. The dominant taxa were Cymbella sp., Fragilaria sp., Navicula sp. and Diatoma sp. The abundance of periphytic algal varied from 0.07 × 10 5 to 8.99 × 10 5 ind./cm 2 , with trends similar to that of species richness. The redundancy analysis and generalized additive model showed that water temperature and nutrient concentration were the key factors influencing the structure of the algal community, followed by discharge rate and velocity, which were the determinants of the spatial and temporal patterns of the algal community. In view of the influence of discharge and velocity on the structure of algal communities, it is suggested that ecological scheduling could be used to regulate the structure of the algal community on the canal wall in the operation of later water division projects to ensure the safety of water division.

Suggested Citation

  • Xiaonuo Chen & Xiaojun Wang & Yuying Li & Yinlei Yao & Yun Zhang & Yeqing Jiang & Xiaohui Lei & Han Liu & Naicheng Wu & Nicola Fohrer, 2022. "Succession and Driving Factors of Periphytic Community in the Middle Route Project of South-to-North Water Division (Henan, China)," IJERPH, MDPI, vol. 19(7), pages 1-18, March.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:7:p:4089-:d:783018
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/7/4089/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/7/4089/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.
    2. Tommaso Luzzati & Angela Parenti & Tommaso Rughi, 2017. "Spatial error regressions for testing the Cancer-EKC," Discussion Papers 2017/218, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    3. Davide Fiaschi & Andrea Mario Lavezzi & Angela Parenti, 2020. "Deep and Proximate Determinants of the World Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(3), pages 677-710, September.
    4. Conor Waldock & Bernhard Wegscheider & Dario Josi & Bárbara Borges Calegari & Jakob Brodersen & Luiz Jardim de Queiroz & Ole Seehausen, 2024. "Deconstructing the geography of human impacts on species’ natural distribution," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    6. Sihvonen, Markus, 2021. "Yield curve momentum," Research Discussion Papers 15/2021, Bank of Finland.
    7. Roberto Basile & Luigi Benfratello & Davide Castellani, 2012. "Geoadditive models for regional count data: an application to industrial location," ERSA conference papers ersa12p83, European Regional Science Association.
    8. Dillon T. Fogarty & Caleb P. Roberts & Daniel R. Uden & Victoria M. Donovan & Craig R. Allen & David E. Naugle & Matthew O. Jones & Brady W. Allred & Dirac Twidwell, 2020. "Woody Plant Encroachment and the Sustainability of Priority Conservation Areas," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    9. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    10. Daniel Melser & Robert J. Hill, 2019. "Residential Real Estate, Risk, Return and Diversification: Some Empirical Evidence," The Journal of Real Estate Finance and Economics, Springer, vol. 59(1), pages 111-146, July.
    11. Ji, Shujuan & Liu, Xiaojie & Wang, Yuanqing, 2024. "The role of road infrastructures in the usage of bikeshare and private bicycle," Transport Policy, Elsevier, vol. 149(C), pages 234-246.
    12. Maciej Berȩsewicz & Dagmara Nikulin, 2021. "Estimation of the size of informal employment based on administrative records with non‐ignorable selection mechanism," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 667-690, June.
    13. repec:grz:wpaper:2014-05 is not listed on IDEAS
    14. Cathrine Ulla Jensen & Toke Emil Panduro, 2016. "PanJen: A test for functional form with continuous variables," IFRO Working Paper 2016/08, University of Copenhagen, Department of Food and Resource Economics.
    15. Ronald E. Gangnon & Natasha K. Stout & Oguzhan Alagoz & John M. Hampton & Brian L. Sprague & Amy Trentham-Dietz, 2018. "Contribution of Breast Cancer to Overall Mortality for US Women," Medical Decision Making, , vol. 38(1_suppl), pages 24-31, April.
    16. Yuko Araki & Atsushi Kawaguchi & Fumio Yamashita, 2013. "Regularized logistic discrimination with basis expansions for the early detection of Alzheimer’s disease based on three-dimensional MRI data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(1), pages 109-119, March.
    17. Weishampel, Anthony & Staicu, Ana-Maria & Rand, William, 2023. "Classification of social media users with generalized functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    18. Megan K. Jennings & Emily Haeuser & Diane Foote & Rebecca L. Lewison & Erin Conlisk, 2020. "Planning for Dynamic Connectivity: Operationalizing Robust Decision-Making and Prioritization Across Landscapes Experiencing Climate and Land-Use Change," Land, MDPI, vol. 9(10), pages 1-18, September.
    19. Robert J. Hill & Alicia N. Rambaldi & Michael Scholz, 2021. "Higher frequency hedonic property price indices: a state-space approach," Empirical Economics, Springer, vol. 61(1), pages 417-441, July.
    20. Adam R. Pines & Bart Larsen & Zaixu Cui & Valerie J. Sydnor & Maxwell A. Bertolero & Azeez Adebimpe & Aaron F. Alexander-Bloch & Christos Davatzikos & Damien A. Fair & Ruben C. Gur & Raquel E. Gur & H, 2022. "Dissociable multi-scale patterns of development in personalized brain networks," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    21. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:7:p:4089-:d:783018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.