IDEAS home Printed from https://ideas.repec.org/a/spr/stabio/v15y2023i2d10.1007_s12561-022-09359-1.html
   My bibliography  Save this article

Longitudinal Associations Between Timing of Physical Activity Accumulation and Health: Application of Functional Data Methods

Author

Listed:
  • Wenyi Lin

    (University of California, San Diego)

  • Jingjing Zou

    (University of California, San Diego)

  • Chongzhi Di

    (Fred Hutchinson Cancer Research Center)

  • Dorothy D. Sears

    (Arizona State University
    University of California, San Diego
    University of California, San Diego)

  • Cheryl L. Rock

    (University of California, San Diego)

  • Loki Natarajan

    (University of California, San Diego)

Abstract

Accelerometers are widely used for tracking human movement and provide minute-level (or even 30 Hz level) physical activity (PA) records for detailed analysis. Instead of using day-level summary statistics to assess these densely sampled inputs, we implement functional principal component analysis (FPCA) approaches to study the temporal patterns of PA data from 245 overweight/obese women at three visits over a 1-year period. We apply longitudinal FPCA to decompose PA inputs, incorporating subject-specific variability, and then test the association between these patterns and obesity-related health outcomes by multiple mixed effect regression models. With the proposed methods, the longitudinal patterns in both densely sampled inputs and scalar outcomes are investigated and connected. The results show that the health outcomes are strongly associated with PA variation, in both subject and visit-level. In addition, we reveal that timing of PA during the day can impact changes in outcomes, a finding that would not be possible with day-level PA summaries. Thus, our findings imply that the use of longitudinal FPCA can elucidate temporal patterns of multiple levels of PA inputs. Furthermore, the exploration of the relationship between PA patterns and health outcomes can be useful for establishing weight-loss guidelines.

Suggested Citation

  • Wenyi Lin & Jingjing Zou & Chongzhi Di & Dorothy D. Sears & Cheryl L. Rock & Loki Natarajan, 2023. "Longitudinal Associations Between Timing of Physical Activity Accumulation and Health: Application of Functional Data Methods," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 309-329, July.
  • Handle: RePEc:spr:stabio:v:15:y:2023:i:2:d:10.1007_s12561-022-09359-1
    DOI: 10.1007/s12561-022-09359-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12561-022-09359-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12561-022-09359-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crainiceanu, Ciprian M. & Staicu, Ana-Maria & Di, Chong-Zhi, 2009. "Generalized Multilevel Functional Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1550-1561.
    2. Morris, Jeffrey S. & Arroyo, Cassandra & Coull, Brent A. & Ryan, Louise M. & Herrick, Richard & Gortmaker, Steven L., 2006. "Using Wavelet-Based Functional Mixed Models to Characterize Population Heterogeneity in Accelerometer Profiles: A Case Study," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1352-1364, December.
    3. Dorothea Dumuid & Željko Pedišić & Javier Palarea-Albaladejo & Josep Antoni Martín-Fernández & Karel Hron & Timothy Olds, 2020. "Compositional Data Analysis in Time-Use Epidemiology: What, Why, How," IJERPH, MDPI, vol. 17(7), pages 1-17, March.
    4. Haochang Shou & Vadim Zipunnikov & Ciprian M. Crainiceanu & Sonja Greven, 2015. "Structured functional principal component analysis," Biometrics, The International Biometric Society, vol. 71(1), pages 247-257, March.
    5. Selene Yue Xu & Sandahl Nelson & Jacqueline Kerr & Suneeta Godbole & Eileen Johnson & Ruth E. Patterson & Cheryl L. Rock & Dorothy D. Sears & Ian Abramson & Loki Natarajan, 2019. "Modeling Temporal Variation in Physical Activity Using Functional Principal Components Analysis," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 403-421, July.
    6. Simon N. Wood, 2011. "Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 3-36, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrada Ivanescu & Ana-Maria Staicu & Fabian Scheipl & Sonja Greven, 2015. "Penalized function-on-function regression," Computational Statistics, Springer, vol. 30(2), pages 539-568, June.
    2. Lian, Heng & Choi, Taeryon & Meng, Jie & Jo, Seongil, 2016. "Posterior convergence for Bayesian functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 27-41.
    3. Robert T. Krafty & Haoyi Fu & Jessica L. Graves & Scott A. Bruce & Martica H. Hall & Stephen F. Smagula, 2019. "Measuring Variability in Rest-Activity Rhythms from Actigraphy with Application to Characterizing Symptoms of Depression," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 314-333, July.
    4. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    5. Selene Yue Xu & Sandahl Nelson & Jacqueline Kerr & Suneeta Godbole & Eileen Johnson & Ruth E. Patterson & Cheryl L. Rock & Dorothy D. Sears & Ian Abramson & Loki Natarajan, 2019. "Modeling Temporal Variation in Physical Activity Using Functional Principal Components Analysis," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 403-421, July.
    6. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    7. Cederbaum, Jona & Scheipl, Fabian & Greven, Sonja, 2018. "Fast symmetric additive covariance smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 25-41.
    8. Mousavi, Seyed Nourollah & Sørensen, Helle, 2017. "Multinomial functional regression with wavelets and LASSO penalization," Econometrics and Statistics, Elsevier, vol. 1(C), pages 150-166.
    9. Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.
    10. Tommaso Luzzati & Angela Parenti & Tommaso Rughi, 2017. "Spatial error regressions for testing the Cancer-EKC," Discussion Papers 2017/218, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    11. Davide Fiaschi & Andrea Mario Lavezzi & Angela Parenti, 2020. "Deep and Proximate Determinants of the World Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(3), pages 677-710, September.
    12. Longhi, Christian & Musolesi, Antonio & Baumont, Catherine, 2014. "Modeling structural change in the European metropolitan areas during the process of economic integration," Economic Modelling, Elsevier, vol. 37(C), pages 395-407.
    13. Dillon T. Fogarty & Caleb P. Roberts & Daniel R. Uden & Victoria M. Donovan & Craig R. Allen & David E. Naugle & Matthew O. Jones & Brady W. Allred & Dirac Twidwell, 2020. "Woody Plant Encroachment and the Sustainability of Priority Conservation Areas," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    14. Daniel Melser & Robert J. Hill, 2019. "Residential Real Estate, Risk, Return and Diversification: Some Empirical Evidence," The Journal of Real Estate Finance and Economics, Springer, vol. 59(1), pages 111-146, July.
    15. repec:grz:wpaper:2014-05 is not listed on IDEAS
    16. Ronald E. Gangnon & Natasha K. Stout & Oguzhan Alagoz & John M. Hampton & Brian L. Sprague & Amy Trentham-Dietz, 2018. "Contribution of Breast Cancer to Overall Mortality for US Women," Medical Decision Making, , vol. 38(1_suppl), pages 24-31, April.
    17. Yuko Araki & Atsushi Kawaguchi & Fumio Yamashita, 2013. "Regularized logistic discrimination with basis expansions for the early detection of Alzheimer’s disease based on three-dimensional MRI data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(1), pages 109-119, March.
    18. Weishampel, Anthony & Staicu, Ana-Maria & Rand, William, 2023. "Classification of social media users with generalized functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    19. Megan K. Jennings & Emily Haeuser & Diane Foote & Rebecca L. Lewison & Erin Conlisk, 2020. "Planning for Dynamic Connectivity: Operationalizing Robust Decision-Making and Prioritization Across Landscapes Experiencing Climate and Land-Use Change," Land, MDPI, vol. 9(10), pages 1-18, September.
    20. Robert J. Hill & Alicia N. Rambaldi & Michael Scholz, 2021. "Higher frequency hedonic property price indices: a state-space approach," Empirical Economics, Springer, vol. 61(1), pages 417-441, July.
    21. Adam R. Pines & Bart Larsen & Zaixu Cui & Valerie J. Sydnor & Maxwell A. Bertolero & Azeez Adebimpe & Aaron F. Alexander-Bloch & Christos Davatzikos & Damien A. Fair & Ruben C. Gur & Raquel E. Gur & H, 2022. "Dissociable multi-scale patterns of development in personalized brain networks," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stabio:v:15:y:2023:i:2:d:10.1007_s12561-022-09359-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.