IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v72y2014i2p405-422.html
   My bibliography  Save this article

Prediction of global stability in room and pillar coal mines

Author

Listed:
  • Ebrahim Ghasemi
  • Mohammad Ataei
  • Kourosh Shahriar

Abstract

Global stability is a necessary prerequisite for safe retreat mining and one of the crucial and complex problems in room and pillar mining, so its prediction plays an important role in the safety of retreat mining and the reduction of pillar failure risk. In this study, we have tried to develop predictive models for anticipating global stability. For this purpose, two of the most popular techniques, logistic regression analysis and fuzzy logic, were taken into account and a predictive model was constructed based on each. For training and testing of these models, a database including 80 retreat mining case histories from 18 room and pillar coal mines, located in West Virginia State, USA, was used. The models predict global stability based on the major contributing parameters of pillar stability. It was found that both models can be used to predict the global stability, but the comparison of two models, in terms of statistical performance indices, shows that the fuzzy logic model provides better results than the logistic regression. These models can be applied to identify the susceptibility of pillar failure in panels of coal mines, and this may help to reduce the casualties resulting from pillar instability. Finally, the sensitivity analysis was performed on database to determine the most important parameters on global stability. The results revealed that the pillar width is the most important parameter, whereas the depth of cover is the least important one. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Ebrahim Ghasemi & Mohammad Ataei & Kourosh Shahriar, 2014. "Prediction of global stability in room and pillar coal mines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 405-422, June.
  • Handle: RePEc:spr:nathaz:v:72:y:2014:i:2:p:405-422
    DOI: 10.1007/s11069-013-1014-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-1014-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-1014-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guojian Zhang & Zhiyang Wang & Guangli Guo & Wei Wei & Fugang Wang & Leilei Zhong & Yaqiang Gong, 2022. "Study on Regional Strata Movement during Deep Mining of Erdos Coal Field and Its Control," IJERPH, MDPI, vol. 19(22), pages 1-32, November.
    2. Hengjie Luan & Huili Lin & Yujing Jiang & Yahua Wang & Jiankang Liu & Pu Wang, 2018. "Risks Induced by Room Mining Goaf and Their Assessment: A Case Study in the Shenfu-Dongsheng Mining Area," Sustainability, MDPI, vol. 10(3), pages 1-17, February.
    3. Weizhang Liang & Suizhi Luo & Guoyan Zhao & Hao Wu, 2020. "Predicting Hard Rock Pillar Stability Using GBDT, XGBoost, and LightGBM Algorithms," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    4. Ning Li & Masoud Zare & Congke Yi & Rafael Jimenez, 2022. "Stability Risk Assessment of Underground Rock Pillars Using Logistic Model Trees," IJERPH, MDPI, vol. 19(4), pages 1-19, February.
    5. Hengfeng Liu & Qiang Sun & Nan Zhou & Zhongya Wu, 2021. "Risk Assessment and Control Strategy of Residual Coal Pillar in Room Mining: Case Study in Ecologically Fragile Mining Areas, China," Sustainability, MDPI, vol. 13(5), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:72:y:2014:i:2:p:405-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.