IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i24p17097-d1008373.html
   My bibliography  Save this article

The Impact of Aging Drivers and Vehicles on the Injury Severity of Crash Victims

Author

Listed:
  • Miguel Santolino

    (Department of Econometrics-Riskcenter-IREA, University of Barcelona, 08034 Barcelona, Spain)

  • Luis Céspedes

    (Zurich Insurance and Riskcenter-IREA, 08034 Barcelona, Spain)

  • Mercedes Ayuso

    (Department of Econometrics-Riskcenter-IREA, University of Barcelona, 08034 Barcelona, Spain)

Abstract

Against a general trend of increasing driver longevity, the injuries suffered by vehicle occupants in Spanish road traffic crashes are analyzed by the level of severity of their bodily injuries (BI). Generalized linear mixed models are applied to model the proportion of non-serious, serious, and fatal victims. The dependence between vehicles involved in the same crash is captured by including random effects. The effect of driver age and vehicle age and their interaction on the proportion of injured victims is analyzed. We find a nonlinear relationship between driver age and BI severity, with young and older drivers constituting the riskiest groups. In contrast, the expected severity of the crash increases linearly up to a vehicle age of 18 and remains constant thereafter at the highest level of BI severity. No interaction between the two variables is found. These results are especially relevant for countries such as Spain with increasing driver longevity and an aging car fleet.

Suggested Citation

  • Miguel Santolino & Luis Céspedes & Mercedes Ayuso, 2022. "The Impact of Aging Drivers and Vehicles on the Injury Severity of Crash Victims," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:17097-:d:1008373
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/24/17097/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/24/17097/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abay, Kibrom A. & Paleti, Rajesh & Bhat, Chandra R., 2013. "The joint analysis of injury severity of drivers in two-vehicle crashes accommodating seat belt use endogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 74-89.
    2. Mercedes Ayuso & Montserrat Guillen & Jens Perch Nielsen, 2019. "Improving automobile insurance ratemaking using telematics: incorporating mileage and driver behaviour data," Transportation, Springer, vol. 46(3), pages 735-752, June.
    3. Karoline Gomes-Franco & Mario Rivera-Izquierdo & Luis Miguel Martín-delosReyes & Eladio Jiménez-Mejías & Virginia Martínez-Ruiz, 2020. "Explaining the Association between Driver’s Age and the Risk of Causing a Road Crash through Mediation Analysis," IJERPH, MDPI, vol. 17(23), pages 1-12, December.
    4. Jingjing Xu & Behram Wali & Xiaobing Li & Jiaqi Yang, 2019. "Injury Severity and Contributing Driver Actions in Passenger Vehicle–Truck Collisions," IJERPH, MDPI, vol. 16(19), pages 1-16, September.
    5. Paúl Narváez-Villa & Blanca Arenas-Ramírez & José Mira & Francisco Aparicio-Izquierdo, 2021. "Analysis and Prediction of Vehicle Kilometers Traveled: A Case Study in Spain," IJERPH, MDPI, vol. 18(16), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel Santolino & Mercedes Ayuso, 2020. "Number and severity of BI victims, assuming dependence between vehicles involved in the crash," IREA Working Papers 202018, University of Barcelona, Research Institute of Applied Economics, revised Dec 2020.
    2. Shengkun Xie, 2021. "Improving Explainability of Major Risk Factors in Artificial Neural Networks for Auto Insurance Rate Regulation," Risks, MDPI, vol. 9(7), pages 1-21, July.
    3. Ramon Alemany & Catalina Bolancé & Roberto Rodrigo & Raluca Vernic, 2020. "Bivariate Mixed Poisson and Normal Generalised Linear Models with Sarmanov Dependence—An Application to Model Claim Frequency and Optimal Transformed Average Severity," Mathematics, MDPI, vol. 9(1), pages 1-18, December.
    4. Alfiero, Simona & Battisti, Enrico & Ηadjielias, Elias, 2022. "Black box technology, usage-based insurance, and prediction of purchase behavior: Evidence from the auto insurance sector," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    5. Gupta, Akshay & Choudhary, Pushpa & Parida, Manoranjan, 2024. "Examining risky driving behaviours: A comparative analysis of SUVs and other car types," Transport Policy, Elsevier, vol. 152(C), pages 9-20.
    6. Tong Zhu & Zishuo Zhu & Jie Zhang & Chenxuan Yang, 2021. "Electric Bicyclist Injury Severity during Peak Traffic Periods: A Random-Parameters Approach with Heterogeneity in Means and Variances," IJERPH, MDPI, vol. 18(21), pages 1-19, October.
    7. Ma, Yu-Luen & Zhu, Xiaoyu & Hu, Xianbiao & Chiu, Yi-Chang, 2018. "The use of context-sensitive insurance telematics data in auto insurance rate making," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 243-258.
    8. Martin Eling & Davide Nuessle & Julian Staubli, 2022. "The impact of artificial intelligence along the insurance value chain and on the insurability of risks," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(2), pages 205-241, April.
    9. Zifeng Zhao & Peng Shi & Xiaoping Feng, 2021. "Knowledge Learning of Insurance Risks Using Dependence Models," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1177-1196, July.
    10. Juan Pablo Montero-Salgado & Jose Muñoz-Sanz & Blanca Arenas-Ramírez & Cristina Alén-Cordero, 2022. "Identification of the Mechanical Failure Factors with Potential Influencing Road Accidents in Ecuador," IJERPH, MDPI, vol. 19(13), pages 1-27, June.
    11. Petya Ventsislavova & David Crundall & Pedro Garcia-Fernandez & Candida Castro, 2021. "Assessing Willingness to Engage in Risky Driving Behaviour Using Naturalistic Driving Footage: The Role of Age and Gender," IJERPH, MDPI, vol. 18(19), pages 1-20, September.
    12. Feng Chen & Mingtao Song & Xiaoxiang Ma, 2019. "Investigation on the Injury Severity of Drivers in Rear-End Collisions Between Cars Using a Random Parameters Bivariate Ordered Probit Model," IJERPH, MDPI, vol. 16(14), pages 1-12, July.
    13. Marjan Qazvini, 2019. "On the Validation of Claims with Excess Zeros in Liability Insurance: A Comparative Study," Risks, MDPI, vol. 7(3), pages 1-17, June.
    14. Francis Duval & Jean‐Philippe Boucher & Mathieu Pigeon, 2023. "Enhancing claim classification with feature extraction from anomaly‐detection‐derived routine and peculiarity profiles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 421-458, June.
    15. B. Claus & L. Warlop, 2022. "The Car Cushion Hypothesis: Bigger Cars Lead to More Risk Taking—Evidence from Behavioural Data," Journal of Consumer Policy, Springer, vol. 45(2), pages 331-342, June.
    16. Yanez, Juan Sebastian & Pigeon, Mathieu, 2021. "Micro-level parametric duration-frequency-severity modeling for outstanding claim payments," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 106-119.
    17. Jennifer S. K. Chan & S. T. Boris Choy & Udi Makov & Ariel Shamir & Vered Shapovalov, 2022. "Variable Selection Algorithm for a Mixture of Poisson Regression for Handling Overdispersion in Claims Frequency Modeling Using Telematics Car Driving Data," Risks, MDPI, vol. 10(4), pages 1-10, April.
    18. Guevara, C. Angelo, 2015. "Critical assessment of five methods to correct for endogeneity in discrete-choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 240-254.
    19. Xiaojun Shao & Xiaoxiang Ma & Feng Chen & Mingtao Song & Xiaodong Pan & Kesi You, 2020. "A Random Parameters Ordered Probit Analysis of Injury Severity in Truck Involved Rear-End Collisions," IJERPH, MDPI, vol. 17(2), pages 1-18, January.
    20. Felix G Rebitschek & Gerd Gigerenzer & Ariane Keitel & Sarah Sommer & Christian Groß & Gert G Wagner, 2021. "Acceptance of criteria for health and driver scoring in the general public in Germany," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:17097-:d:1008373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.