Acceptance of Criteria for Health and Driver Scoring In the General Public in Germany
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0250224
Download full text from publisher
Other versions of this item:
- Felix G Rebitschek & Gerd Gigerenzer & Ariane Keitel & Sarah Sommer & Christian Groß & Gert G Wagner, 2021. "Acceptance of criteria for health and driver scoring in the general public in Germany," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-14, April.
References listed on IDEAS
- Stock, Stephanie & Schmidt, Harald & Büscher, Guido & Gerber, Andreas & Drabik, Anna & Graf, Christian & Lüngen, Markus & Stollenwerk, Björn, 2010. "Financial incentives in the German Statutory Health Insurance: New findings, new questions," Health Policy, Elsevier, vol. 96(1), pages 51-56, June.
- Mercedes Ayuso & Montserrat Guillen & Jens Perch Nielsen, 2019.
"Improving automobile insurance ratemaking using telematics: incorporating mileage and driver behaviour data,"
Transportation, Springer, vol. 46(3), pages 735-752, June.
- Mercedes Ayuso & Montserrat Guillén & Jens Perch Nielsen, 2016. "Improving automobile insurance ratemaking using telematics: incorporating mileage and driver behaviour data," Working Papers XREAP2016-08, Xarxa de Referència en Economia Aplicada (XREAP), revised Dec 2016.
- Mercedes Ayuso & Montserrat Guillén & Jens Perch Nielsen, 2017. "Improving automobile insurance ratemaking using telematics: incorporating mileage and driver behaviour data," Working Papers 2017-01, Universitat de Barcelona, UB Riskcenter.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shengkun Xie, 2021. "Improving Explainability of Major Risk Factors in Artificial Neural Networks for Auto Insurance Rate Regulation," Risks, MDPI, vol. 9(7), pages 1-21, July.
- Ramon Alemany & Catalina Bolancé & Roberto Rodrigo & Raluca Vernic, 2020. "Bivariate Mixed Poisson and Normal Generalised Linear Models with Sarmanov Dependence—An Application to Model Claim Frequency and Optimal Transformed Average Severity," Mathematics, MDPI, vol. 9(1), pages 1-18, December.
- Alfiero, Simona & Battisti, Enrico & Ηadjielias, Elias, 2022. "Black box technology, usage-based insurance, and prediction of purchase behavior: Evidence from the auto insurance sector," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
- Laura Grassi, 2024. "In a world of Open Finance, are customers willing to share data? An analysis of the data-driven insurance business," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 14(3), pages 727-753, September.
- Marjan Qazvini, 2019. "On the Validation of Claims with Excess Zeros in Liability Insurance: A Comparative Study," Risks, MDPI, vol. 7(3), pages 1-17, June.
- Yanez, Juan Sebastian & Pigeon, Mathieu, 2021. "Micro-level parametric duration-frequency-severity modeling for outstanding claim payments," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 106-119.
- Donatella Porrini & Giulio Fusco & Cosimo Magazzino, 2020. "Black boxes and market efficiency: the effect on premiums in the Italian motor-vehicle insurance market," European Journal of Law and Economics, Springer, vol. 49(3), pages 455-472, June.
- Shengkun Xie, 2024. "Analyzing the Influence of Telematics-Based Pricing Strategies on Traditional Rating Factors in Auto Insurance Rate Regulation," Mathematics, MDPI, vol. 12(19), pages 1-23, October.
- Jiamin Yu, 2022. "Will claim history become a deprecated rating factor? An optimal design method for the real-time road risk model," Papers 2204.11585, arXiv.org.
- Yanmei Liu & Koustuv Dalal & Björn Stollenwerk, 2013. "The Association between Health System Development and the Burden of Cardiovascular Disease: An Analysis of WHO Country Profiles," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-7, April.
- Paloyo, Alfredo R. & Reichert, Arndt R. & Reuss-Borst, Monika & Tauchmann, Harald, 2015. "Who responds to financial incentives for weight loss? Evidence from a randomized controlled trial," Social Science & Medicine, Elsevier, vol. 145(C), pages 44-52.
- Augurzky, Boris & Reichert, Arndt R. & Schmidt, Christoph M., 2012. "The Effect of a Bonus Program for Preventive Health Behavior on Health Expenditures," Ruhr Economic Papers 373, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
- Omid Ghaffarpasand & Mark Burke & Louisa K. Osei & Helen Ursell & Sam Chapman & Francis D. Pope, 2022. "Vehicle Telematics for Safer, Cleaner and More Sustainable Urban Transport: A Review," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
- Ma, Yu-Luen & Zhu, Xiaoyu & Hu, Xianbiao & Chiu, Yi-Chang, 2018. "The use of context-sensitive insurance telematics data in auto insurance rate making," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 243-258.
- Martin Eling & Davide Nuessle & Julian Staubli, 2022. "The impact of artificial intelligence along the insurance value chain and on the insurability of risks," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(2), pages 205-241, April.
- Zifeng Zhao & Peng Shi & Xiaoping Feng, 2021. "Knowledge Learning of Insurance Risks Using Dependence Models," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1177-1196, July.
- Francis Duval & Jean‐Philippe Boucher & Mathieu Pigeon, 2023. "Enhancing claim classification with feature extraction from anomaly‐detection‐derived routine and peculiarity profiles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 421-458, June.
- Sabine Witt & Reiner Leidl & Christian Becker & Rolf Holle & Michael Block & Johannes Brachmann & Sigmund Silber & Björn Stollenwerk, 2014. "The Effectiveness of the Cardiovascular Disease Prevention Programme ‘KardioPro’ Initiated by a German Sickness Fund: A Time-to-Event Analysis of Routine Data," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-17, December.
- Jennifer S. K. Chan & S. T. Boris Choy & Udi Makov & Ariel Shamir & Vered Shapovalov, 2022. "Variable Selection Algorithm for a Mixture of Poisson Regression for Handling Overdispersion in Claims Frequency Modeling Using Telematics Car Driving Data," Risks, MDPI, vol. 10(4), pages 1-10, April.
- Miguel Santolino & Mercedes Ayuso, 2020. "Number and severity of BI victims, assuming dependence between vehicles involved in the crash," IREA Working Papers 202018, University of Barcelona, Research Institute of Applied Economics, revised Dec 2020.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:espost:233592. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.