IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i24p16506-d997818.html
   My bibliography  Save this article

Combination of Water-Saving Irrigation and Nitrogen Fertilization Regulates Greenhouse Gas Emissions and Increases Rice Yields in High-Cold Regions, Northeast China

Author

Listed:
  • Yu Sun

    (Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
    Key Laboratory of Germplasm Enhancement and Physiology and Ecology of Food Crop in Cold Region, Ministry of Education, Harbin 150030, China)

  • Yongcai Lai

    (Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China)

  • Qi Wang

    (Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China)

  • Qiulai Song

    (Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China)

  • Liang Jin

    (Plant Nutrition and Resources Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Xiannan Zeng

    (Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China)

  • Yanjiang Feng

    (Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China)

  • Xinrui Lu

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China)

Abstract

Increased rice production, which benefitted from cropping areas expansion and continuous N applications, resulted in severe increases in greenhouse gases (GHG) emissions from 1983 to 2019 in Heilongjiang Province, China. Therefore, field trials were performed in the high-cold Harbin region, Northeast China, to determine the efficiency of incorporating water regimes with N fertilization in minimizing the impact of rice production on GHG emissions. Two water-saving irrigation strategies, intermittent irrigation (W1) and control irrigation (W2), were used relative to continuous flooding (W0), and we combined them with six fertilized treatments. Our results demonstrated that W1 and W2 significantly decreased seasonal CH 4 emissions by 19.7–30.0% and 11.4–29.9%, enhanced seasonal N 2 O emissions by 77.0–127.0% and 16.2–42.4%, and increased significantly yields by 5.9–12.7% and 0–4.7%, respectively, compared with W0. Although trade-offs occurred between CH 4 and N 2 O emissions, W1 and W2 resulted in significant reductions in global warming potential (GWP). Moreover, low N rates (<120 kg N ha −1 ) performed better in GWP than high N rates. N fertilization and irrigation regimes had remarkable effects on rice yields and GWP. In conclusion, the incorporation of W1 and a N application under 120 kg N ha −1 could simultaneously mitigate GWP while enhancing production in black soils in high-cold Northeast China.

Suggested Citation

  • Yu Sun & Yongcai Lai & Qi Wang & Qiulai Song & Liang Jin & Xiannan Zeng & Yanjiang Feng & Xinrui Lu, 2022. "Combination of Water-Saving Irrigation and Nitrogen Fertilization Regulates Greenhouse Gas Emissions and Increases Rice Yields in High-Cold Regions, Northeast China," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:16506-:d:997818
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/24/16506/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/24/16506/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng, Z.Y. & Qin, T. & Du, X.Z. & Sheng, F. & Li, C.F., 2021. "Effects of irrigation regime and rice variety on greenhouse gas emissions and grain yields from paddy fields in central China," Agricultural Water Management, Elsevier, vol. 250(C).
    2. Zheng, Jing & Fan, Junliang & Zhang, Fucang & Guo, Jinjin & Yan, Shicheng & Zhuang, Qianlai & Cui, Ningbo & Guo, Li, 2021. "Interactive effects of mulching practice and nitrogen rate on grain yield, water productivity, fertilizer use efficiency and greenhouse gas emissions of rainfed summer maize in northwest China," Agricultural Water Management, Elsevier, vol. 248(C).
    3. Quang, Le Xuan & Nakamura, Kimihito & Hung, Tran & Tinh, Nguyen Van & Matsuda, Soken & Kadota, Kengo & Horino, Haruhiko & Hai, Pham Thanh & Komatsu, Hirotaka & Hasegawa, Kiyoshi & Fukuda, Shinji & Hir, 2019. "Effect of organizational paddy water management by a water user group on methane and nitrous oxide emissions and rice yield in the Red River Delta, Vietnam," Agricultural Water Management, Elsevier, vol. 217(C), pages 179-192.
    4. Pan, Junfeng & Liu, Yanzhuo & Zhong, Xuhua & Lampayan, Rubenito M. & Singleton, Grant R. & Huang, Nongrong & Liang, Kaiming & Peng, Bilin & Tian, Ka, 2017. "Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China," Agricultural Water Management, Elsevier, vol. 184(C), pages 191-200.
    5. Wang, Guangshuai & Liang, Yueping & Zhang, Qian & Jha, Shiva K. & Gao, Yang & Shen, Xiaojun & Sun, Jingsheng & Duan, Aiwang, 2016. "Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 163(C), pages 403-407.
    6. Arvin Mosier & Reiner Wassmann & Louis Verchot & Jennifer King & Cheryl Palm, 2004. "Methane and Nitrogen Oxide Fluxes in Tropical Agricultural Soils: Sources, Sinks and Mechanisms," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 6(1), pages 11-49, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Jing & Fan, Junliang & Zhou, Minghua & Zhang, Fucang & Liao, Zhenqi & Lai, Zhenlin & Yan, Shicheng & Guo, Jinjin & Li, Zhijun & Xiang, Youzhen, 2022. "Ridge-furrow plastic film mulching enhances grain yield and yield stability of rainfed maize by improving resources capture and use efficiency in a semi-humid drought-prone region," Agricultural Water Management, Elsevier, vol. 269(C).
    2. Tang, Jiankai & Yang, Qiliang & Liang, Jiaping & Wang, Haidong & Yue, Xiulu, 2024. "Water management, planting slope indicators, and economic benefit analysis for Panax notoginseng production decision under shaded and rain-shelter cultivation: A three-year sloping fields experiment," Agricultural Water Management, Elsevier, vol. 291(C).
    3. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Huarui Gong & Jing Li & Zhen Liu & Yitao Zhang & Ruixing Hou & Zhu Ouyang, 2022. "Mitigated Greenhouse Gas Emissions in Cropping Systems by Organic Fertilizer and Tillage Management," Land, MDPI, vol. 11(7), pages 1-18, July.
    5. Ma, Shou-tian & Wang, Tong-chao & Ma, Shou-Chen, 2022. "Effects of drip irrigation on root activity pattern, root-sourced signal characteristics and yield stability of winter wheat," Agricultural Water Management, Elsevier, vol. 271(C).
    6. Wang, Hong & Zhang, Yan & Zhang, Yaojun & McDaniel, Marshall D. & Sun, Lan & Su, Wei & Fan, Xiaorong & Liu, Shuhua & Xiao, Xin, 2020. "Water-saving irrigation is a ‘win-win’ management strategy in rice paddies – With both reduced greenhouse gas emissions and enhanced water use efficiency," Agricultural Water Management, Elsevier, vol. 228(C).
    7. Li, Xiangyu & Long, Anran & Ji, Xinjie & Wang, Xuelian & Wang, Zhengyu & Gong, Xiangwei & Zhang, Wen & Qi, Hua & Jiang, Ying & Sun, Zhanxiang & Zhao, Fengyan, 2024. "Straw return and nitrogen fertilizer application regulate the efficient use of radiation, water, nitrogen and maize productivity in Northeast China," Agricultural Water Management, Elsevier, vol. 301(C).
    8. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    9. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    10. Wang, Jingwei & Li, Yuan & Niu, Wenquan, 2021. "Effect of alternating drip irrigation on soil gas emissions, microbial community composition, and root–soil interactions," Agricultural Water Management, Elsevier, vol. 256(C).
    11. Li, Zhiming & Duan, Songpo & Ouyang, Xin & Song, Shijie & Chen, Diwen & Fan, Xianting & Ding, Hanqing & Shen, Hong, 2024. "Coupled soil moisture management and alginate oligosaccharide strategies enhance citrus orchard production, water and potassium use efficiency by improving the rhizosphere soil environment," Agricultural Water Management, Elsevier, vol. 297(C).
    12. Qiang, Shengcai & Zhang, Yan & Zhao, Hong & Fan, Junliang & Zhang, Fucang & Sun, Min & Gao, Zhiqiang, 2022. "Combined effects of urea type and placement depth on grain yield, water productivity and nitrogen use efficiency of rain-fed spring maize in northern China," Agricultural Water Management, Elsevier, vol. 262(C).
    13. Wei, Jun & Cui, Yuanlai & Zhou, Sihang & Luo, Yufeng, 2022. "Regional water-saving potential calculation method for paddy rice based on remote sensing," Agricultural Water Management, Elsevier, vol. 267(C).
    14. Liao, Zhenqi & Zeng, Hualiang & Fan, Junliang & Lai, Zhenlin & Zhang, Chen & Zhang, Fucang & Wang, Haidong & Cheng, Minghui & Guo, Jinjin & Li, Zhijun & Wu, Peng, 2022. "Effects of plant density, nitrogen rate and supplemental irrigation on photosynthesis, root growth, seed yield and water-nitrogen use efficiency of soybean under ridge-furrow plastic mulching," Agricultural Water Management, Elsevier, vol. 268(C).
    15. Kalli, Rajesh & Jena, Pradyot Ranjan & Timilsina, Raja Rajendra & Rahut, Dil Bahadur & Sonobe, Tetsushi, 2024. "Effect of irrigation on farm efficiency in tribal villages of Eastern India," Agricultural Water Management, Elsevier, vol. 291(C).
    16. Leonardo Verdi & Anna Dalla Marta & Simone Orlandini & Anita Maienza & Silvia Baronti & Francesco Primo Vaccari, 2024. "Evaluation of Biochar Addition to Digestate, Slurry, and Manure for Mitigating Carbon Emissions," Agriculture, MDPI, vol. 14(1), pages 1-12, January.
    17. Zhao, Chunlei & Jia, Xiaoxu & Shao, Ming’an & Zhu, Yuanjun, 2021. "Regional variations in plant-available soil water storage and related driving factors in the middle reaches of the Yellow River Basin, China," Agricultural Water Management, Elsevier, vol. 257(C).
    18. Xinchao Ma & Yanchao Yang & Zhanming Tan & Yunxia Cheng & Tingting Wang & Liyu Yang & Tao He & Shuang Liang, 2024. "Climate-Smart Drip Irrigation with Fertilizer Coupling Strategies to Improve Tomato Yield, Quality, Resources Use Efficiency and Mitigate Greenhouse Gases Emissions," Land, MDPI, vol. 13(11), pages 1-18, November.
    19. Mathijs Harmsen & Charlotte Tabak & Lena Höglund-Isaksson & Florian Humpenöder & Pallav Purohit & Detlef Vuuren, 2023. "Uncertainty in non-CO2 greenhouse gas mitigation contributes to ambiguity in global climate policy feasibility," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Du, Xue-zhu & Hao, Mian & Guo, Li-jin & Li, Shi-hao & Hu, Wan-ling & Sheng, Feng & Li, Cheng-fang, 2022. "Integrated assessment of carbon footprint and economic profit from paddy fields under microbial decaying agents with diverse water regimes in central China," Agricultural Water Management, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:16506-:d:997818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.