IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i24p16484-d997503.html
   My bibliography  Save this article

A Comparative Study of Various Land Use and Land Cover Change Models to Predict Ecosystem Service Value

Author

Listed:
  • Chaoxu Luan

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, China)

  • Renzhi Liu

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, China)

Abstract

Ecosystem services are closely related to human well-being and are vulnerable to high-intensity human land-use activities. Understanding the evolution of land use and land cover (LULC) changes and quantifying ecosystem service value (ESV) are significant for sustainable development. In this study, we used land use and land cover data and other data from 2000 to 2020 to analyze the evolution of land use and land cover and ESV in Tongliao, China. With the goal of exploring the characteristics of different cellular automata (CA)-based models, CA-Markov, Future Land Use Simulation (FLUS), and Patch-generating Land Use Simulation (PLUS) models were used to simulate future land use and land cover, and the results were verified and compared. Considering the impacts of policies for capital farmland (CF) and ecological protection red line (EPRL) in the context of territorial spatial planning, four scenarios (inertial development, S1; CF, S2; EPRL, S3; EPRL and CF, S4) were set. The results showed that from 2000 to 2020, farmland and built-up land increased the most (341.18 km 2 and 220.56 km 2 ), while grassland had the largest decrease (380.08 km 2 ). The main mutual transitions were from grassland and farmland. The total ESV showed a decreasing trend (from 52,364.56 million yuan to 51,620.62 million yuan). The simulation results for 2035 under four scenarios were similar, where farmland would decrease the most (96.81 km 2 ). The ESV in 2035 would decrease from 51,620.62 million yuan to 51,541.12 million. In addition, under scenarios for the impact of policy, the land showed a trend of scattered expansion. This study provides a scientific basis for making regional sustainable development policy decisions and implementing ecological environmental protection measures.

Suggested Citation

  • Chaoxu Luan & Renzhi Liu, 2022. "A Comparative Study of Various Land Use and Land Cover Change Models to Predict Ecosystem Service Value," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:16484-:d:997503
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/24/16484/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/24/16484/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gashaw, Temesgen & Tulu, Taffa & Argaw, Mekuria & Worqlul, Abeyou W. & Tolessa, Terefe & Kindu, Mengistie, 2018. "Estimating the impacts of land use/land cover changes on Ecosystem Service Values: The case of the Andassa watershed in the Upper Blue Nile basin of Ethiopia," Ecosystem Services, Elsevier, vol. 31(PA), pages 219-228.
    2. Costanza, Robert & de Groot, Rudolf & Braat, Leon & Kubiszewski, Ida & Fioramonti, Lorenzo & Sutton, Paul & Farber, Steve & Grasso, Monica, 2017. "Twenty years of ecosystem services: How far have we come and how far do we still need to go?," Ecosystem Services, Elsevier, vol. 28(PA), pages 1-16.
    3. S Openshaw, 1998. "Neural Network, Genetic, and Fuzzy Logic Models of Spatial Interaction," Environment and Planning A, , vol. 30(10), pages 1857-1872, October.
    4. Daowei Zhang & Anne Stenger, 2015. "Value and valuation of forest ecosystem services," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 4(2), pages 129-140, July.
    5. Sutton, Paul C. & Anderson, Sharolyn J. & Costanza, Robert & Kubiszewski, Ida, 2016. "The ecological economics of land degradation: Impacts on ecosystem service values," Ecological Economics, Elsevier, vol. 129(C), pages 182-192.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhua Jiao & Yuhui Wang & Chenghong Tu & Xuenan Hou & Chunjuan Lyu & Xiang Fan & Lu Xia, 2024. "Spatiotemporal Evolution and Future of Carbon Storage in Resource-Based Chinese Province: A Case Study from Shanxi Using PLUS–InVEST Model Prediction," Sustainability, MDPI, vol. 16(11), pages 1-25, May.
    2. Mengyao Li & Hongxia Luo & Zili Qin & Yuanxin Tong, 2023. "Spatial-Temporal Simulation of Carbon Storage Based on Land Use in Yangtze River Delta under SSP-RCP Scenarios," Land, MDPI, vol. 12(2), pages 1-18, February.
    3. Xingwang Hu & Weihua Liao & Yifang Wei & Zhiyan Wei & Shengxia Huang, 2024. "Analysis of Land Use Change and Its Economic and Ecological Value under the Optimal Scenario and Green Development Advancement Policy: A Case Study of Hechi, China," Sustainability, MDPI, vol. 16(12), pages 1-20, June.
    4. Yun Jiang & Guoming Du & Hao Teng & Jun Wang & Haolin Li, 2023. "Multi-Scenario Land Use Change Simulation and Spatial Response of Ecosystem Service Value in Black Soil Region of Northeast China," Land, MDPI, vol. 12(5), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muluberhan Biedemariam & Emiru Birhane & Biadgilgn Demissie & Tewodros Tadesse & Girmay Gebresamuel & Solomon Habtu, 2022. "Ecosystem Service Values as Related to Land Use and Land Cover Changes in Ethiopia: A Review," Land, MDPI, vol. 11(12), pages 1-21, December.
    2. Henghui Xi & Wanglai Cui & Li Cai & Mengyuan Chen & Chenglei Xu, 2021. "Evaluation and Prediction of Ecosystem Service Value in the Zhoushan Islands Based on LUCC," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    3. Chen, Chengjing & Liu, Yihua, 2021. "Spatiotemporal changes of ecosystem services value by incorporating planning policies: A case of the Pearl River Delta, China," Ecological Modelling, Elsevier, vol. 461(C).
    4. Yajing Shao & Xuefeng Yuan & Chaoqun Ma & Ruifang Ma & Zhaoxia Ren, 2020. "Quantifying the Spatial Association between Land Use Change and Ecosystem Services Value: A Case Study in Xi’an, China," Sustainability, MDPI, vol. 12(11), pages 1-20, May.
    5. Fangfang Xun & Yecui Hu & Ling Lv & Jinhui Tong, 2017. "Farmers’ Awareness of Ecosystem Services and the Associated Policy Implications," Sustainability, MDPI, vol. 9(9), pages 1-13, September.
    6. Lili Zhang & Baoqing Hu & Ze Zhang & Gaodou Liang & Simin Huang, 2023. "Comprehensive Evaluation of Ecological-Economic Value of Guangxi Based on Land Consolidation," Land, MDPI, vol. 12(4), pages 1-25, March.
    7. Kubiszewski, Ida & Jarvis, Diane & Zakariyya, Nabeeh, 2019. "Spatial variations in contributors to life satisfaction: An Australian case study," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    8. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    9. Kubiszewski, Ida & Concollato, Luke & Costanza, Robert & Stern, David I., 2023. "Changes in authorship, networks, and research topics in ecosystem services," Ecosystem Services, Elsevier, vol. 59(C).
    10. Fengran Wei & Mingshun Xiang & Lanlan Deng & Yao Wang & Wenheng Li & Suhua Yang & Zhenni Wu, 2023. "Spatiotemporal Distribution Characteristics and Their Driving Forces of Ecological Service Value in Transitional Geospace: A Case Study in the Upper Reaches of the Minjiang River, China," Sustainability, MDPI, vol. 15(19), pages 1-18, October.
    11. Jie Chen & Hui Fu & Shengtian Chen, 2023. "Multi-Scenario Simulation and Assessment of Ecosystem Service Value at the City Level from the Perspective of “Production–Living–Ecological” Spaces: A Case Study of Haikou, China," Land, MDPI, vol. 12(5), pages 1-21, May.
    12. Jiang, Wei & Wu, Tong & Fu, Bojie, 2021. "The value of ecosystem services in China: A systematic review for twenty years," Ecosystem Services, Elsevier, vol. 52(C).
    13. Yanru Wang & Xiaojuan Zhang & Peihao Peng, 2021. "Spatio-Temporal Changes of Land-Use/Land Cover Change and the Effects on Ecosystem Service Values in Derong County, China, from 1992–2018," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    14. Xiaoyan Zhang & Jian Ji, 2022. "Spatiotemporal Differentiation of Ecosystem Service Value and Its Drivers in the Jiangsu Coastal Zone, Eastern China," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    15. Shuming Ma & Jie Huang & Yingying Chai, 2021. "Proposing a GEE-Based Spatiotemporally Adjusted Value Transfer Method to Assess Land-Use Changes and Their Impacts on Ecosystem Service Values in the Shenyang Metropolitan Area," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    16. Niccolucci, Valentina & Coscieme, Luca & Marchettini, Nadia, 2021. "Benefit transfer and the economic value of Biocapacity: Introducing the ecosystem service Yield factor," Ecosystem Services, Elsevier, vol. 48(C).
    17. Paul C. Sutton & Sophia L. Duncan & Sharolyn J. Anderson, 2019. "Valuing Our National Parks: An Ecological Economics Perspective," Land, MDPI, vol. 8(4), pages 1-17, March.
    18. Xuexian Xu & Yuling Peng, 2023. "Ecological Compensation in Zhijiang City Based on Ecosystem Service Value and Ecological Risk," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    19. Xiao Zhang & Jun Wang & Mingyue Zhao & Yan Gao & Yanxu Liu, 2023. "Variations of Ecosystem Services Supply and Demand on the Southeast Hilly Area of China: Implications for Ecosystem Protection and Restoration Management," Land, MDPI, vol. 12(4), pages 1-25, March.
    20. Hejie Wei & Jiaxin Zheng & Dong Xue & Xiaobin Dong & Mengxue Liu & Yali Zhang, 2022. "Identifying the Relationship between Livelihoods and Land Ecosystem Services Using a Coupled Model: A Case Study in the “One River and Two Tributaries” Region of Tibet," Land, MDPI, vol. 11(9), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:16484-:d:997503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.