IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4461-d1401207.html
   My bibliography  Save this article

Spatiotemporal Evolution and Future of Carbon Storage in Resource-Based Chinese Province: A Case Study from Shanxi Using PLUS–InVEST Model Prediction

Author

Listed:
  • Yuhua Jiao

    (School of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China)

  • Yuhui Wang

    (School of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China)

  • Chenghong Tu

    (School of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China)

  • Xuenan Hou

    (School of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China)

  • Chunjuan Lyu

    (School of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China)

  • Xiang Fan

    (School of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China)

  • Lu Xia

    (School of Resources and Environment, Shanxi Agricultural University, Jinzhong 030801, China)

Abstract

Resource exploitation markedly alters land use and ecological carbon storage, posing risks to carbon sinks and food security. This study analyzes land-use change from 1990 to 2020 in the resource-based province of Shanxi, China. By introducing a mineral resource driver, the PLUS model was used to predict four scenarios: natural development (ND), cropland protection (CP), ecological protection (EP), and dual protection of ecology and cropland (DP). The spatial and temporal evolutions of carbon storage were then analyzed using the InVEST model. Forests were predominantly distributed in mountainous areas, with croplands in southerly and central flat areas, construction lands in and around cities, and mining lands sporadically distributed across Shanxi. From 1990 to 2020, croplands and grasslands decreased, while forest, construction, and mining lands increased. Carbon storage decreased continuously, with a total loss of 15.1 × 10 6 t. High-value carbon storage areas were in the Lüliang, Taihang, and Taiyue Mountains, and low-value areas were in the more populous central and southern regions. Carbon storage was predicted to decline by 2035 under the ND and CP scenarios and to exceed that of 2020 under the EP and DP scenarios. The DP scenario projected an increase of 4.93 × 10 6 t in carbon storage by 2035. The DP scenario realizes the protection of carbon sinks in resource-based areas and maintains food security, providing a theoretical reference for achieving carbon neutrality and high-quality sustainable development in Shanxi Province.

Suggested Citation

  • Yuhua Jiao & Yuhui Wang & Chenghong Tu & Xuenan Hou & Chunjuan Lyu & Xiang Fan & Lu Xia, 2024. "Spatiotemporal Evolution and Future of Carbon Storage in Resource-Based Chinese Province: A Case Study from Shanxi Using PLUS–InVEST Model Prediction," Sustainability, MDPI, vol. 16(11), pages 1-25, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4461-:d:1401207
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4461/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4461/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Furui Xi & Gang Lin & Yanan Zhao & Xiang Li & Zhiyu Chen & Chenglong Cao, 2023. "Land Use Optimization and Carbon Storage Estimation in the Yellow River Basin, China," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    2. Garreth Bruff & Adrian Wood, 2000. "Local Sustainable Development: Land-use Planning's Contribution to Modern Local Government," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 43(4), pages 519-539.
    3. Chaoxu Luan & Renzhi Liu, 2022. "A Comparative Study of Various Land Use and Land Cover Change Models to Predict Ecosystem Service Value," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
    4. Martin Heimann & Markus Reichstein, 2008. "Terrestrial ecosystem carbon dynamics and climate feedbacks," Nature, Nature, vol. 451(7176), pages 289-292, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingyi Zhang & Hanqi Ding & Jingkun Xu & Bohong Zheng, 2024. "A Simulation-Based Prediction of Land Use Change Impacts on Carbon Storage from a Regional Imbalance Perspective: A Case Study of Hunan Province, China," Land, MDPI, vol. 13(10), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabastine Ugbemuna Ugbaje & Thomas F.A. Bishop, 2020. "Hydrological Control of Vegetation Greenness Dynamics in Africa: A Multivariate Analysis Using Satellite Observed Soil Moisture, Terrestrial Water Storage and Precipitation," Land, MDPI, vol. 9(1), pages 1-15, January.
    2. Yuanbo Cao & Huijie Xiao & Baitian Wang & Yunlong Zhang & Honghui Wu & Xijing Wang & Yadong Yang & Tingting Wei, 2021. "Soil Respiration May Overestimate or Underestimate in Forest Ecosystems," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
    3. Yongxia Ding & Siqi Liang & Shouzhang Peng, 2019. "Climate Change Affects Forest Productivity in a Typical Climate Transition Region of China," Sustainability, MDPI, vol. 11(10), pages 1-14, May.
    4. Li Yu & Fengxue Gu & Mei Huang & Bo Tao & Man Hao & Zhaosheng Wang, 2020. "Impacts of 1.5 °C and 2 °C Global Warming on Net Primary Productivity and Carbon Balance in China’s Terrestrial Ecosystems," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    5. De Leijster, V. & Santos, M.J. & Wassen, M.W. & Camargo García, J.C. & Llorca Fernandez, I. & Verkuil, L. & Scheper, A. & Steenhuis, M. & Verweij, P.A., 2021. "Ecosystem services trajectories in coffee agroforestry in Colombia over 40 years," Ecosystem Services, Elsevier, vol. 48(C).
    6. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    7. Furui Xi & Gang Lin & Yanan Zhao & Xiang Li & Zhiyu Chen & Chenglong Cao, 2023. "Land Use Optimization and Carbon Storage Estimation in the Yellow River Basin, China," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    8. Rosemary-Claire Collard & Jessica Dempsey, 2013. "Life for Sale? The Politics of Lively Commodities," Environment and Planning A, , vol. 45(11), pages 2682-2699, November.
    9. Ludovic Henneron & Jerôme Balesdent & Gaël Alvarez & Pierre Barré & François Baudin & Isabelle Basile-Doelsch & Lauric Cécillon & Alejandro Fernandez-Martinez & Christine Hatté & Sébastien Fontaine, 2022. "Bioenergetic control of soil carbon dynamics across depth," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Norizan, Nur Zainul Arifin & Hassan, Norhaslina & Yusoff, Mariney Mohd, 2021. "Strengthening flood resilient development in malaysia through integration of flood risk reduction measures in local plans," Land Use Policy, Elsevier, vol. 102(C).
    11. Bhattarai, Mukesh Dev & Secchi, Silvia & Schoof, Justin, 2017. "Projecting corn and soybeans yields under climate change in a Corn Belt watershed," Agricultural Systems, Elsevier, vol. 152(C), pages 90-99.
    12. Wen Wang & Huamin Liu & Jinghui Zhang & Zhiyong Li & Lixin Wang & Zheng Wang & Yantao Wu & Yang Wang & Cunzhu Liang, 2020. "Effect of Grazing Types on Community-Weighted Mean Functional Traits and Ecosystem Functions on Inner Mongolian Steppe, China," Sustainability, MDPI, vol. 12(17), pages 1-15, September.
    13. Jahan Zeb Khan & Muhammad Zaheer, 2018. "Impacts Of Environmental Changeability And Human Activities On Hydrological Processes And Response ," Environmental Contaminants Reviews (ECR), Zibeline International Publishing, vol. 1(1), pages 13-17, June.
    14. Shu An & Yifang Duan & Dengshuai Chen & Xiaoman Wu, 2024. "Spatiotemporal Evolution and Drivers of Carbon Storage from a Sustainable Development Perspective: A Case Study of the Region along the Middle and Lower Yellow River, China," Sustainability, MDPI, vol. 16(15), pages 1-19, July.
    15. Wenmin Zhang & Guy Schurgers & Josep Peñuelas & Rasmus Fensholt & Hui Yang & Jing Tang & Xiaowei Tong & Philippe Ciais & Martin Brandt, 2023. "Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Grigorios L. Kyriakopoulos, 2023. "Land Use Planning and Green Environment Services: The Contribution of Trail Paths to Sustainable Development," Land, MDPI, vol. 12(5), pages 1-25, May.
    17. Tianjie Lei & Jianjun Wu & Jiabao Wang & Changliang Shao & Weiwei Wang & Dongpan Chen & Xiangyu Li, 2022. "The Net Influence of Drought on Grassland Productivity over the Past 50 Years," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    18. Mengyao Li & Hongxia Luo & Zili Qin & Yuanxin Tong, 2023. "Spatial-Temporal Simulation of Carbon Storage Based on Land Use in Yangtze River Delta under SSP-RCP Scenarios," Land, MDPI, vol. 12(2), pages 1-18, February.
    19. Mingming Li & Xingchang Zhang & Qing Zhen & Fengpeng Han, 2013. "Spatial Analysis of Soil Organic Carbon in Zhifanggou Catchment of the Loess Plateau," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-7, December.
    20. Yun Jiang & Guoming Du & Hao Teng & Jun Wang & Haolin Li, 2023. "Multi-Scenario Land Use Change Simulation and Spatial Response of Ecosystem Service Value in Black Soil Region of Northeast China," Land, MDPI, vol. 12(5), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4461-:d:1401207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.