IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i22p15332-d978464.html
   My bibliography  Save this article

Air Pollutants in Metropolises of Eastern Coastal China

Author

Listed:
  • Mao Mao

    (School of Atmosphere and Remote Sensing, Wuxi University, Wuxi 214105, China
    Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Liuxintian Rao

    (School of Atmosphere and Remote Sensing, Wuxi University, Wuxi 214105, China)

  • Huan Jiang

    (Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Siqi He

    (School of Atmosphere and Remote Sensing, Wuxi University, Wuxi 214105, China)

  • Xiaolin Zhang

    (School of Atmosphere and Remote Sensing, Wuxi University, Wuxi 214105, China
    Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China)

Abstract

Recently released hourly particular matter (PM:PM 2.5 and PM 10 ) and gaseous pollutants (SO 2 , NO 2 , CO, and O 3 ) data observed in Qingdao, Hangzhou, and Xiamen from 2015 to 2019 were utilized to reveal the current situation of air pollution over eastern coastal China. The PM pollution situation over the three metropolises ameliorated during studied period with the concentrations decreasing about 20–30%. Gas pollutants, excepting SO 2 , generally exhibit no evident reduction tendencies, and a more rigorous control standard on gaseous pollutants is neededEven for the year 2018 with low pollution levels among the study period, these levels (<10% of PM 2.5 , <6% of PM 10 , and <15% of O 3 ) surpass the Grade II of the Chinese Ambient Air Quality Standard (CAAQS) over these metropolises of eastern coast China. No matter in which year, both SO 2 and CO concentrations are always below the Grade-II standards. According to the comparative analysis of PM 2.5 /PM 10 and PM 2.5 /CO during episode days and non-episode days, the formation of secondary aerosols associated with stagnant weather systems play an important role in the pollutant accumulation as haze episodes occurred. The stronger seasonal variations and higher magnitude occur in Qingdao and Hangzhou, while weaker seasonal variations and lower magnitudes occur in Xiamen. In Qingdao and Hangzhou, PM, NO 2 , SO 2 , and CO show relatively high levels in the cold wintertime and low levels in summer, whereas O 3 shows a completely opposite pattern. Xiamen exhibits high levels of all air pollutants except O 3 in spring due to its subtropical marine monsoon climate with mild winters. According to the back trajectory hierarchical clustering and concentration weighted trajectory (CWT) analysis, the regional transmission from adjacent cities has a significant impact on the atmospheric pollutant concentrations under the control of the prejudiced winds. Thus, besides local emission reduction, strengthening regional environmental cooperation and implementing joint prevention are effective measures to mitigate air pollution in the eastern coastal areas of China.

Suggested Citation

  • Mao Mao & Liuxintian Rao & Huan Jiang & Siqi He & Xiaolin Zhang, 2022. "Air Pollutants in Metropolises of Eastern Coastal China," IJERPH, MDPI, vol. 19(22), pages 1-16, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:15332-:d:978464
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/22/15332/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/22/15332/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mao Mao & Xiaolin Zhang & Yan Yin, 2018. "Particulate Matter and Gaseous Pollutions in Three Metropolises along the Chinese Yangtze River: Situation and Implications," IJERPH, MDPI, vol. 15(6), pages 1-29, May.
    2. Mao Mao & Haofei Sun & Xiaolin Zhang, 2020. "Air Pollution Characteristics and Health Risks in the Yangtze River Economic Belt, China during Winter," IJERPH, MDPI, vol. 17(24), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mao Mao & Haofei Sun & Xiaolin Zhang, 2020. "Air Pollution Characteristics and Health Risks in the Yangtze River Economic Belt, China during Winter," IJERPH, MDPI, vol. 17(24), pages 1-17, December.
    2. Pengguo Zhao & Jia Liu & Yu Luo & Xiuting Wang & Bolan Li & Hui Xiao & Yunjun Zhou, 2019. "Comparative Analysis of Long-Term Variation Characteristics of SO 2 , NO 2 , and O 3 in the Ecological and Economic Zones of the Western Sichuan Plateau, Southwest China," IJERPH, MDPI, vol. 16(18), pages 1-19, September.
    3. Weiguang Wang & Yangyang Wang, 2023. "Regional Differences, Dynamic Evolution and Driving Factors Analysis of PM 2.5 in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    4. Lining Zhu & Yu Zhang & Zheng Wu & Chengcheng Zhang, 2021. "Spatio-Temporal Characteristics of SO 2 across Weifang from 2008 to 2020," IJERPH, MDPI, vol. 18(22), pages 1-17, November.
    5. Dan Yan & Guoliang Chen & Yu Lei & Qi Zhou & Chengjun Liu & Fan Su, 2022. "Spatiotemporal Regularity and Socioeconomic Drivers of the AQI in the Yangtze River Delta of China," IJERPH, MDPI, vol. 19(15), pages 1-19, July.
    6. Tomasz Gorzelnik & Marek Bogacki & Robert Oleniacz, 2024. "Identification of Factors Influencing Episodes of High PM 10 Concentrations in the Air in Krakow (Poland) Using Random Forest Method," Sustainability, MDPI, vol. 16(20), pages 1-23, October.
    7. Mao Mao & Xiaolin Zhang & Yamei Shao & Yan Yin, 2019. "Spatiotemporal Variations and Factors of Air Quality in Urban Central China during 2013–2015," IJERPH, MDPI, vol. 17(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:15332-:d:978464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.