IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i21p14406-d962555.html
   My bibliography  Save this article

Drinking Water Supply in the Region of Antofagasta (Chile): A Challenge between Past, Present and Future

Author

Listed:
  • Barbara Ruffino

    (DIATI–Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Torino, Italy
    CleanWaterCenter@PoliTO, Politecnico di Torino, 10129 Torino, Italy)

  • Giuseppe Campo

    (DIATI–Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Torino, Italy)

  • Dafne Crutchik

    (Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago 7941169, Chile)

  • Arturo Reyes

    (Departamento de Ingeniería en Minas, Universidad de Antofagasta, Antofagasta 1240000, Chile)

  • Mariachiara Zanetti

    (DIATI–Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Torino, Italy)

Abstract

Since the mid-nineteen century, when the first mining companies were established in the region of Antofagasta to extract saltpeter, mining managers and civil authorities have always had to face a number of problems to secure a water supply sufficient for the development of industrial activities and society. The unique features of the region, namely the scarcity of rainfall, the high concentration of arsenic in freshwaters and the increasing pressure of the mining sector, have made the supply of drinking water for local communities a challenge. In the 1950s, the town of Antofagasta experienced a serious drinking water crisis. The 300 km long aqueduct starting from the Toconce catchment, opened in 1958, temporarily ended this shortage of drinking water but created an even more dramatic problem. The concentration of arsenic in the water consumed by the population had grown by approx. ten times, reaching the value of 0.860 mg/L and seriously affecting people’s health. The water treatment plants (WTPs) which were installed starting from the 1970s in the region (namely the Old and New Salar del Carmen in Antofagasta and Cerro Topater in Calama, plus the two recent desalination plants in Antofagasta and Tocopilla), have ensured, since 2014, that the drinking water coverage in the urban areas was practically universal (>99.9%). However, the rural areas have continued to experience significant shortcomings regarding their capacity to ensure the quality and continuity of the water supply service in the long run. Presently, approx. 42% of the rural population of the region of Antofagasta does not have a formal supply of drinking water. The recent amendments to the Chilean Water Code (March 2022) and the interventions carried out in the framework of the Agua Potable Rural (APR) program were intended to reduce the socio-ecological inequalities due to the lack of drinking water in the semi-concentrated and isolated rural population.

Suggested Citation

  • Barbara Ruffino & Giuseppe Campo & Dafne Crutchik & Arturo Reyes & Mariachiara Zanetti, 2022. "Drinking Water Supply in the Region of Antofagasta (Chile): A Challenge between Past, Present and Future," IJERPH, MDPI, vol. 19(21), pages 1-21, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14406-:d:962555
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/21/14406/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/21/14406/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manuel Prieto, 2016. "Bringing water markets down to Chile’s Atacama Desert," Water International, Taylor & Francis Journals, vol. 41(2), pages 191-212, March.
    2. Douglas Aitken & Diego Rivera & Alex Godoy-Faúndez & Eduardo Holzapfel, 2016. "Water Scarcity and the Impact of the Mining and Agricultural Sectors in Chile," Sustainability, MDPI, vol. 8(2), pages 1-18, February.
    3. Ashwani Kumar Tiwari & Enrico Suozzi & Carlos Silva & Marina De Maio & Mariachiara Zanetti, 2021. "Role of Integrated Approaches in Water Resources Management: Antofagasta Region, Chile," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anahí Urquiza & Marco Billi, 2020. "Water markets and social–ecological resilience to water stress in the context of climate change: an analysis of the Limarí Basin, Chile," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 1929-1951, March.
    2. Ricardo Situmeang & Jana Mazancová & Hynek Roubík, 2022. "Technological, Economic, Social and Environmental Barriers to Adoption of Small-Scale Biogas Plants: Case of Indonesia," Energies, MDPI, vol. 15(14), pages 1-16, July.
    3. Roberto Pizarro & Pablo A. Garcia-Chevesich & John E. McCray & Jonathan O. Sharp & Rodrigo Valdés-Pineda & Claudia Sangüesa & Dayana Jaque-Becerra & Pablo Álvarez & Sebastián Norambuena & Alfredo Ibáñ, 2022. "Climate Change and Overuse: Water Resource Challenges during Economic Growth in Coquimbo, Chile," Sustainability, MDPI, vol. 14(6), pages 1-10, March.
    4. Patricia A. Henríquez-Piskulich & Constanza Schapheer & Nicolas J. Vereecken & Cristian Villagra, 2021. "Agroecological Strategies to Safeguard Insect Pollinators in Biodiversity Hotspots: Chile as a Case Study," Sustainability, MDPI, vol. 13(12), pages 1-31, June.
    5. Jose-Luis Palacios & Guiomar Calvo & Alicia Valero & Antonio Valero, 2018. "Exergoecology Assessment of Mineral Exports from Latin America: Beyond a Tonnage Perspective," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    6. Araya, Natalia & Ramírez, Yendery & Cisternas, Luis A. & Kraslawski, Andrzej, 2021. "Use of real options to enhance water-energy nexus in mine tailings management," Applied Energy, Elsevier, vol. 303(C).
    7. Angelo Antoci & Paolo Russu & Elisa Ticci, 2019. "Mining and Local Economies: Dilemma between Environmental Protection and Job Opportunities," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    8. Chih-Hao Wang & Hongwei Dong, 2017. "Responding to the Drought: A Spatial Statistical Approach to Investigating Residential Water Consumption in Fresno, California," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    9. Bach, Vanessa & Finogenova, Natalia & Berger, Markus & Winter, Lisa & Finkbeiner, Matthias, 2017. "Enhancing the assessment of critical resource use at the country level with the SCARCE method – Case study of Germany," Resources Policy, Elsevier, vol. 53(C), pages 283-299.
    10. David Talbot & Guillaume Barbat, 2020. "Water disclosure in the mining sector: An assessment of the credibility of sustainability reports," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(3), pages 1241-1251, May.
    11. Nishtman Karimi & Hossein Azadi & Kobe Boussauw, 2021. "The Water Management Regime in Western Iran: A Retrospective Analysis through a Hybrid Transitions Framework," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    12. Ashwani Kumar Tiwari & Enrico Suozzi & Carlos Silva & Marina De Maio & Mariachiara Zanetti, 2021. "Role of Integrated Approaches in Water Resources Management: Antofagasta Region, Chile," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    13. Fuentes, Ignacio & Vervoort, R. Willem & McPhee, James & Rojas, Luis A. Reyes, 2024. "Agricultural water accounting: Complementing a governance monitoring schema with remote sensing calculations at different scales," Agricultural Water Management, Elsevier, vol. 292(C).
    14. Junjun Zhi & Xinyue Cao & Wangbing Liu & Yang Sun & Da Xu & Caiwei Da & Lei Jin & Jin Wang & Zihao Zheng & Shuyuan Lai & YongJiao Liu & Guohai Zhu, 2023. "Remote Sensing Monitoring and Spatial Pattern Analysis of Non-Grain Production of Cultivated Land in Anhui Province, China," Land, MDPI, vol. 12(8), pages 1-21, July.
    15. Leonor Zapién Zapién Serrano & Noemí Ortiz Ortiz Lara & Rafael Ríos Ríos Vera & Diana Cholico-González, 2021. "Removal of Fe(III), Cd(II), and Zn(II) as Hydroxides by Precipitation–Flotation System," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    16. Iskandar Zainuddin Rela & Muhammad Zamrun Firihu & Abd Hair Awang & Marsuki Iswandi & Jalaluddin Abdul Malek & Anas Nikoyan & La Nalefo & Hartina Batoa & Salahuddin Salahuddin, 2021. "Formation of Farming Community Resilience Models for Sustainable Agricultural Development at the Mining Neighborhood in Southeast Sulawesi Indonesia," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    17. Christopher Schulz & Antonio A. R. Ioris, 2017. "The Paradox of Water Abundance in Mato Grosso, Brazil," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    18. Patricia P.A. Henríquez‐piskulich & Constanza Schapheer & Nicolas Vereecken & Cristian Villagra, 2021. "Agroecological strategies to safeguard insect pollinators in biodiversity hotspots: Chile as a case study," ULB Institutional Repository 2013/328659, ULB -- Universite Libre de Bruxelles.
    19. Vanessa Bach & Markus Berger & Natalia Finogenova & Matthias Finkbeiner, 2017. "Assessing the Availability of Terrestrial Biotic Materials in Product Systems (BIRD)," Sustainability, MDPI, vol. 9(1), pages 1-35, January.
    20. Dafne Crutchik & José Luis Campos, 2021. "Municipal Wastewater Reuse: Is it a Competitive Alternative to Seawater Desalination?," Sustainability, MDPI, vol. 13(12), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14406-:d:962555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.