IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i21p14302-d960505.html
   My bibliography  Save this article

How Do Landscape Heterogeneity, Community Structure, and Topographical Factors Contribute to the Plant Diversity of Urban Remnant Vegetation at Different Scales?

Author

Listed:
  • Xingzhao Liu

    (College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    Innovation Center of Engineering Technology for Monitoring and Restoration of Ecological Fragile Areas in Southeast China, Ministry of Natural Resources, Fuzhou 350013, China)

  • Guimei Yang

    (College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

  • Qingmin Que

    (College of Forestry and Landscape Architecture, South China Agriculture University, Guangzhou 510642, China)

  • Qi Wang

    (School of Modern Agriculture and Environment, Weifang Institute of Technology, Weifang 262500, China)

  • Zengke Zhang

    (School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China)

  • Liujing Huang

    (College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

Abstract

In highly fragmented urban areas, plant diversity of remnant vegetation may depend not only on community structure and topographical factors, but also on landscape heterogeneity. Different buffer radius settings can affect the relative importance of these factors to plant diversity. The aim of this study was to examine the relative importance of landscape heterogeneity, community structure, and topographical factors on plant diversity under different buffer radii in biodiversity hotspots. We established 48 plots of remnant vegetation in Guangzhou city, one of the biodiversity hotspots. A buffer radius of 500 m, 1000 m, and 2000 m was established around the center of each sample plot, and 17 landscape heterogeneity indices in each buffer were calculated by FRAGSTATS 4.2 software. Combined with the community structure and topographical factors, the impact factors of plant diversity under different buffer radii were analyzed by multiple regression analysis. We found the following: (1) The combined explanatory power of the three factors accounted for 43% of the species diversity indices and 62% of the richness index at its peak. The three impact factors rarely act independently and usually create comprehensive cumulative effects. (2) Scale does matter in urban landscape studies. At a 500 m buffer radius, community structure combined with road disturbance indices was strongly related to diversity indices in herb and shrub layers. The stand age was negatively correlated with the tree-layer richness index. As the scale increased, the diversity indices and richness index in the three layers decreased or increased under the influence of comprehensive factors. (3) The richness index in the herb layer was more responsive to impact factors than other biodiversity indices. Except for the herb layer, the interpretation of landscape heterogeneity for each plant diversity index was more stable than that for the other two factors. Road disturbance indices, combined with the other six landscape pattern metrics, can well indicate species diversity and richness. We suggest that the vegetation area of remnant patches within a radius of 500–2000 m should be appropriately increased to protect plant diversity, and the negative effects of road disturbance should also be considered.

Suggested Citation

  • Xingzhao Liu & Guimei Yang & Qingmin Que & Qi Wang & Zengke Zhang & Liujing Huang, 2022. "How Do Landscape Heterogeneity, Community Structure, and Topographical Factors Contribute to the Plant Diversity of Urban Remnant Vegetation at Different Scales?," IJERPH, MDPI, vol. 19(21), pages 1-20, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14302-:d:960505
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/21/14302/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/21/14302/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marufa Sultana & Max Müller & Magdalena Meyer & Ilse Storch, 2022. "Neighboring Green Network and Landscape Metrics Explain Biodiversity within Small Urban Green Areas—A Case Study on Birds," Sustainability, MDPI, vol. 14(11), pages 1-11, May.
    2. Ilkka Hanski & Otso Ovaskainen, 2000. "The metapopulation capacity of a fragmented landscape," Nature, Nature, vol. 404(6779), pages 755-758, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kristina Janeckova Molnarova & Iris C. Bohnet & Kamila Svobodova & Kateřina Černý Pixová & Michael Daniels & Jan Skaloš & Kristýna Drhlíková & Hossein Azadi & Roman Zámečník & Petr Sklenička, 2022. "Does Increasing Farm Plot Size Influence the Visual Quality of Everyday Agricultural Landscapes?," IJERPH, MDPI, vol. 20(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laguna, M.F. & Abramson, G. & Kuperman, M.N. & Lanata, J.L. & Monjeau, J.A., 2015. "Mathematical model of livestock and wildlife: Predation and competition under environmental disturbances," Ecological Modelling, Elsevier, vol. 309, pages 110-117.
    2. Joyce Maschinski & Michael Ross & Hong Liu & Joe O’Brien & Eric Wettberg & Kristin Haskins, 2011. "Sinking ships: conservation options for endemic taxa threatened by sea level rise," Climatic Change, Springer, vol. 107(1), pages 147-167, July.
    3. Vuilleumier, Séverine & Fontanillas, Pierre, 2007. "Landscape structure affects dispersal in the greater white-toothed shrew: Inference between genetic and simulated ecological distances," Ecological Modelling, Elsevier, vol. 201(3), pages 369-376.
    4. Drielsma, Michael & Love, Jamie, 2021. "An equitable method for evaluating habitat amount and potential occupancy," Ecological Modelling, Elsevier, vol. 440(C).
    5. Cornell, Stephen J. & Ovaskainen, Otso, 2008. "Exact asymptotic analysis for metapopulation dynamics on correlated dynamic landscapes," Theoretical Population Biology, Elsevier, vol. 74(3), pages 209-225.
    6. Christensen, Claire & Albert, István & Grenfell, Bryan & Albert, Réka, 2010. "Disease dynamics in a dynamic social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2663-2674.
    7. Eriksson, A. & Elías-Wolff, F. & Mehlig, B., 2013. "Metapopulation dynamics on the brink of extinction," Theoretical Population Biology, Elsevier, vol. 83(C), pages 101-122.
    8. d’Acampora, Bárbara H.A. & Higueras, Ester & Román, Emilia, 2018. "Combining different metrics to measure the ecological connectivity of two mangrove landscapes in the Municipality of Florianópolis, Southern Brazil," Ecological Modelling, Elsevier, vol. 384(C), pages 103-110.
    9. Bodin, Örjan & Saura, Santiago, 2010. "Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments," Ecological Modelling, Elsevier, vol. 221(19), pages 2393-2405.
    10. Teresa González & Pia Berger & Claudia N. Sánchez & Faezeh Mahichi, 2023. "Sustainability of Urban Parks: Applicable Methodological Framework for a Simple Assessment," Sustainability, MDPI, vol. 15(21), pages 1-22, October.
    11. Zhouqiao Ren & Jianhua He & Qiaobing Yue, 2021. "Assessing the Impact of Urban Expansion on Surrounding Forested Landscape Connectivity across Space and Time," Land, MDPI, vol. 10(4), pages 1-14, April.
    12. Bauer, Dana Marie & Swallow, Stephen K. & Paton, Peter W.C., 2010. "Cost-effective species conservation in exurban communities: A spatial analysis," Resource and Energy Economics, Elsevier, vol. 32(2), pages 180-202, April.
    13. Ohlmann, Marc & Munoz, François & Massol, François & Thuiller, Wilfried, 2024. "Assessing mutualistic metacommunity capacity by integrating spatial and interaction networks," Theoretical Population Biology, Elsevier, vol. 156(C), pages 22-39.
    14. Peck, Steven L., 2012. "Networks of habitat patches in tsetse fly control: Implications of metapopulation structure on assessing local extinction probabilities," Ecological Modelling, Elsevier, vol. 246(C), pages 99-102.
    15. Vuilleumier, Séverine & Possingham, Hugh P., 2012. "Interacting populations in heterogeneous environments," Ecological Modelling, Elsevier, vol. 228(C), pages 96-105.
    16. Gaaff, Aris & Reinhard, Stijn, 2012. "Incorporating the value of ecological networks into cost–benefit analysis to improve spatially explicit land-use planning," Ecological Economics, Elsevier, vol. 73(C), pages 66-74.
    17. Munoz, François & Cheptou, Pierre-Olivier & Kjellberg, Finn, 2007. "Spectral analysis of simulated species distribution maps provides insights into metapopulation dynamics," Ecological Modelling, Elsevier, vol. 205(3), pages 314-322.
    18. Hashem Althagafi & Sergei Petrovskii, 2021. "Metapopulation Persistence and Extinction in a Fragmented Random Habitat: A Simulation Study," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    19. Bauer, Dana Marie & Swallow, Stephen K., 2013. "Conserving metapopulations in human-altered landscapes at the urban–rural fringe," Ecological Economics, Elsevier, vol. 95(C), pages 159-170.
    20. J Nevil Amos & Andrew F Bennett & Ralph Mac Nally & Graeme Newell & Alexandra Pavlova & James Q Radford & James R Thomson & Matt White & Paul Sunnucks, 2012. "Predicting Landscape-Genetic Consequences of Habitat Loss, Fragmentation and Mobility for Multiple Species of Woodland Birds," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14302-:d:960505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.