IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v205y2007i3p314-322.html
   My bibliography  Save this article

Spectral analysis of simulated species distribution maps provides insights into metapopulation dynamics

Author

Listed:
  • Munoz, François
  • Cheptou, Pierre-Olivier
  • Kjellberg, Finn

Abstract

Modelling the spatial dynamics of populations is a basic approach in ecology, in order to understand their observed spatial and temporal patterns, which can be diverse and complex. From the metapopulation perspective, the spatial distribution of populations results from colonization–extinction random process over a network of suitable habitat cells. Hence, evaluating such dynamic is an important issue for the follow-up of populations. Our aim here is to demonstrate that Fourier spectral analysis of population distribution maps can provide insights into metapopulation dynamics in a heterogeneous habitat. We simulated metapopulation dynamics in spatially structured habitat maps and investigated the steady spatial occupancy patterns using Fourier analysis. We showed that there were separable spectral signatures of habitat structure and of population dynamics. Fourier spectral analysis thus provides a promising tool for inferring independent characteristics of metapopulation dynamics and habitat structure from species occurrence data.

Suggested Citation

  • Munoz, François & Cheptou, Pierre-Olivier & Kjellberg, Finn, 2007. "Spectral analysis of simulated species distribution maps provides insights into metapopulation dynamics," Ecological Modelling, Elsevier, vol. 205(3), pages 314-322.
  • Handle: RePEc:eee:ecomod:v:205:y:2007:i:3:p:314-322
    DOI: 10.1016/j.ecolmodel.2007.02.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380007000968
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2007.02.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ilkka Hanski & Otso Ovaskainen, 2000. "The metapopulation capacity of a fragmented landscape," Nature, Nature, vol. 404(6779), pages 755-758, April.
    2. Mugglestone, Moira A. & Renshaw, Eric, 1996. "A practical guide to the spectral analysis of spatial point processes," Computational Statistics & Data Analysis, Elsevier, vol. 21(1), pages 43-65, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Munoz, François, 2009. "Distance-based eigenvector maps (DBEM) to analyse metapopulation structure with irregular sampling," Ecological Modelling, Elsevier, vol. 220(20), pages 2683-2689.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laguna, M.F. & Abramson, G. & Kuperman, M.N. & Lanata, J.L. & Monjeau, J.A., 2015. "Mathematical model of livestock and wildlife: Predation and competition under environmental disturbances," Ecological Modelling, Elsevier, vol. 309, pages 110-117.
    2. Joyce Maschinski & Michael Ross & Hong Liu & Joe O’Brien & Eric Wettberg & Kristin Haskins, 2011. "Sinking ships: conservation options for endemic taxa threatened by sea level rise," Climatic Change, Springer, vol. 107(1), pages 147-167, July.
    3. Cornell, Stephen J. & Ovaskainen, Otso, 2008. "Exact asymptotic analysis for metapopulation dynamics on correlated dynamic landscapes," Theoretical Population Biology, Elsevier, vol. 74(3), pages 209-225.
    4. Møller, Jesper & Torrisi, Giovanni Luca, 2007. "The pair correlation function of spatial Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 77(10), pages 995-1003, June.
    5. Christensen, Claire & Albert, István & Grenfell, Bryan & Albert, Réka, 2010. "Disease dynamics in a dynamic social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(13), pages 2663-2674.
    6. Bodin, Örjan & Saura, Santiago, 2010. "Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments," Ecological Modelling, Elsevier, vol. 221(19), pages 2393-2405.
    7. Ohlmann, Marc & Munoz, François & Massol, François & Thuiller, Wilfried, 2024. "Assessing mutualistic metacommunity capacity by integrating spatial and interaction networks," Theoretical Population Biology, Elsevier, vol. 156(C), pages 22-39.
    8. Gaaff, Aris & Reinhard, Stijn, 2012. "Incorporating the value of ecological networks into cost–benefit analysis to improve spatially explicit land-use planning," Ecological Economics, Elsevier, vol. 73(C), pages 66-74.
    9. Ventura, Paulo C. & Tokuda, Eric K. & da F. Costa, Luciano & Rodrigues, Francisco A., 2023. "A Markov chain for metapopulations of small sizes with attraction landscape," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    10. Jesper Møller & Håkon Toftaker, 2014. "Geometric Anisotropic Spatial Point Pattern Analysis and Cox Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 414-435, June.
    11. Elina Numminen & Anna-Liisa Laine, 2020. "The spread of a wild plant pathogen is driven by the road network," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-21, March.
    12. Alexander Korotkov & Sergei Petrovskii, 2023. "Extinctions in a Metapopulation with Nonlinear Dispersal Coupling," Mathematics, MDPI, vol. 11(20), pages 1-22, October.
    13. Xingzhao Liu & Guimei Yang & Qingmin Que & Qi Wang & Zengke Zhang & Liujing Huang, 2022. "How Do Landscape Heterogeneity, Community Structure, and Topographical Factors Contribute to the Plant Diversity of Urban Remnant Vegetation at Different Scales?," IJERPH, MDPI, vol. 19(21), pages 1-20, November.
    14. Bode, Michael & Burrage, Kevin & Possingham, Hugh P., 2008. "Using complex network metrics to predict the persistence of metapopulations with asymmetric connectivity patterns," Ecological Modelling, Elsevier, vol. 214(2), pages 201-209.
    15. Vuilleumier, S. & Goudet, J. & Perrin, N., 2010. "Evolution in heterogeneous populations: From migration models to fixation probabilities," Theoretical Population Biology, Elsevier, vol. 78(4), pages 250-258.
    16. Jacopo Grilli & György Barabás & Stefano Allesina, 2015. "Metapopulation Persistence in Random Fragmented Landscapes," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-13, May.
    17. Zamberletti, Patrizia & Zaffaroni, Marta & Accatino, Francesco & Creed, Irena F. & De Michele, Carlo, 2018. "Connectivity among wetlands matters for vulnerable amphibian populations in wetlandscapes," Ecological Modelling, Elsevier, vol. 384(C), pages 119-127.
    18. Baveco, Johannes M. & Kuipers, Harold & Nolet, Bart A., 2011. "A large-scale multi-species spatial depletion model for overwintering waterfowl," Ecological Modelling, Elsevier, vol. 222(20), pages 3773-3784.
    19. Perhans, Karin & Glöde, Dan & Gilbertsson, Jessica & Persson, Anette & Gustafsson, Lena, 2011. "Fine-scale conservation planning outside of reserves: Cost-effective selection of retention patches at final harvest," Ecological Economics, Elsevier, vol. 70(4), pages 771-777, February.
    20. Vuilleumier, Séverine & Fontanillas, Pierre, 2007. "Landscape structure affects dispersal in the greater white-toothed shrew: Inference between genetic and simulated ecological distances," Ecological Modelling, Elsevier, vol. 201(3), pages 369-376.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:205:y:2007:i:3:p:314-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.