IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i21p14094-d956617.html
   My bibliography  Save this article

Effects of Inorganic Passivators on Gas Production and Heavy Metal Passivation Performance during Anaerobic Digestion of Pig Manure and Corn Straw

Author

Listed:
  • Xiaoliang Luo

    (School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China)

  • Bincheng Zhao

    (School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China)

  • Mingguo Peng

    (School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China)

  • Rongyan Shen

    (School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China)

  • Linqiang Mao

    (School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China)

  • Wenyi Zhang

    (School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China)

Abstract

The treatment of livestock manure caused by the expansion of the breeding industry in China has attracted wide attention. Heavy metals in pig manure can pollute soil and water and even transfer to crops, posing harm to humans through the food chain. In this study, corn straw was selected as the additive and introduced into the anaerobic digestion. Sepiolite (SE), ferric oxide (Fe 2 O 3 ), attapulgite (AT) and ferric sulfate (FeSO 4 ) were used as passivators to compare the effects of these inorganic passivators on gas production and passivation of heavy metals during the process of the anaerobic digestion. When the dry mass ratio of pig manure to straw is 8:2, the gas production efficiency is optimal. SE, AT and ferric sulfate have a much stronger ability to improve gas production performance than Fe 2 O 3 . The total gas production increased by 10.34%, 6.62% and 4.56%, and the average methane production concentration increased by 0.7%, 0.3% and 0.4%, respectively. The influence of SE, AT and ferric sulfate on the passivation of heavy metals is much better than Fe 2 O 3 , and the fractions in biological effective forms of Cu and Zn reduced by 41.87 and 19.32%, respectively. The anaerobic digestion of mixed materials is conducive to the gas production and the passivation of heavy metals. Therefore, SE, AT and ferric sulfate are selected as composite passivators, and the optimal ratio of inorganic composite passivators i: AT 7.5 g/L, ferric sulfate 5 g/L and SE 7.5 g/L, according to the results of orthogonal experiments. This study can provide a theoretical basis for the safe application of biogas fertilizers.

Suggested Citation

  • Xiaoliang Luo & Bincheng Zhao & Mingguo Peng & Rongyan Shen & Linqiang Mao & Wenyi Zhang, 2022. "Effects of Inorganic Passivators on Gas Production and Heavy Metal Passivation Performance during Anaerobic Digestion of Pig Manure and Corn Straw," IJERPH, MDPI, vol. 19(21), pages 1-15, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14094-:d:956617
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/21/14094/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/21/14094/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Danious P. Sounthararajah & Paripurnanda Loganathan & Jaya Kandasamy & Saravanamuthu Vigneswaran, 2015. "Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon," IJERPH, MDPI, vol. 12(9), pages 1-15, August.
    2. Juan Li & Xiujin Li & Akiber Chufo Wachemo & Weiwei Chen & Xiaoyu Zuo, 2022. "Determining Optimal Temperature Combination for Effective Pretreatment and Anaerobic Digestion of Corn Stalk," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
    3. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li Jiang & Yanru Zhang & Yi Zhu & Zhongliang Huang & Jing Huang & Zijian Wu & Xuan Zhang & Xiaoli Qin & Hui Li, 2023. "Effects of Magnetic Biochar Addition on Mesophilic Anaerobic Digestion of Sewage Sludge," IJERPH, MDPI, vol. 20(5), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Pan, Junting & Peng, Wanxi & Wang, Yajing & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "The potential of aquatic weed as a resource for sustainable bioenergy sources and bioproducts production," Energy, Elsevier, vol. 278(PA).
    2. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Shang-Feng Tang & Hang Zhou & Wen-Tao Tan & Jun-Guo Huang & Peng Zeng & Jiao-Feng Gu & Bo-Han Liao, 2022. "Adsorption Characteristics and Mechanisms of Fe-Mn Oxide Modified Biochar for Pb(II) in Wastewater," IJERPH, MDPI, vol. 19(14), pages 1-15, July.
    4. Yanara Alessandra Santana Moura & Daniela de Araújo Viana-Marques & Ana Lúcia Figueiredo Porto & Raquel Pedrosa Bezerra & Attilio Converti, 2020. "Pigments Production, Growth Kinetics, and Bioenergetic Patterns in Dunaliella tertiolecta (Chlorophyta) in Response to Different Culture Media," Energies, MDPI, vol. 13(20), pages 1-19, October.
    5. Siqueira, J.C. & Braga, M.Q. & Ázara, M.S. & Garcia, K.J. & Alencar, S.N.M. & Ramos, T.S. & Siniscalchi, L.A.B. & Assemany, P.P. & Ensinas, A.V., 2022. "Recovery of vinasse with combined microalgae cultivation in a conceptual energy-efficient industrial plant: Analysis of related process considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Pascual, Celia & Cantera, Sara & Muñoz, Raúl & Lebrero, Raquel, 2021. "Siloxanes removal in a two-phase partitioning biotrickling filter: Influence of the EBRT and the organic phase," Renewable Energy, Elsevier, vol. 177(C), pages 52-60.
    8. Yang, Qiulian & Li, Haitao & Wang, Dong & Zhang, Xiaochun & Guo, Xiangqian & Pu, Shaochen & Guo, Ruixin & Chen, Jianqiu, 2020. "Utilization of chemical wastewater for CO2 emission reduction: Purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture," Applied Energy, Elsevier, vol. 276(C).
    9. Sher, Farooq & Smječanin, Narcisa & Hrnjić, Harun & Bakunić, Emir & Sulejmanović, Jasmina, 2024. "Prospects of renewable energy potentials and development in Bosnia and Herzegovina – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Oluwafunmilayo Abiola Aworanti & Oluseye Omotoso Agbede & Samuel Enahoro Agarry & Ayobami Olu Ajani & Oyetola Ogunkunle & Opeyeolu Timothy Laseinde & S. M. Ashrafur Rahman & Islam Md Rizwanul Fattah, 2023. "Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables," Energies, MDPI, vol. 16(8), pages 1-36, April.
    11. Xiaoming Huang & Tianhu Chen & Xuehua Zou & Mulan Zhu & Dong Chen & Min Pan, 2017. "The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques," IJERPH, MDPI, vol. 14(10), pages 1-11, September.
    12. Igor Hudák & Pavel Skryja & Jiří Bojanovský & Zdeněk Jegla & Martin Krňávek, 2021. "The Effect of Inert Fuel Compounds on Flame Characteristics," Energies, MDPI, vol. 15(1), pages 1-18, December.
    13. Mahmudul, H.M. & Rasul, M.G. & Akbar, D. & Narayanan, R. & Mofijur, M., 2022. "Food waste as a source of sustainable energy: Technical, economical, environmental and regulatory feasibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    14. Amit Kumar Sharma & Pradeepta Kumar Sahoo & Mainak Mukherjee & Alok Patel, 2022. "Assessment of Sustainable Biogas Production from Co-Digestion of Jatropha De-Oiled Cake and Cattle Dung Using Floating Drum Type Digester under Psychrophilic and Mesophilic Conditions," Clean Technol., MDPI, vol. 4(2), pages 1-13, June.
    15. Tanvir, Rahamat Ullah & Zhang, Jianying & Canter, Timothy & Chen, Dick & Lu, Jingrang & Hu, Zhiqiang, 2021. "Harnessing solar energy using phototrophic microorganisms: A sustainable pathway to bioenergy, biomaterials, and environmental solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    16. Mohammed Umar Abba & Hasfalina Che Man & Raba’ah Syahidah Azis & Aida Isma Idris & Muhammad Hazwan Hamzah & Mohammed Abdulsalam, 2021. "Synthesis of Nano-Magnetite from Industrial Mill Chips for the Application of Boron Removal: Characterization and Adsorption Efficacy," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    17. Marco Osvaldo Vigueras-Zúñiga & Carlos Augusto Ramírez-Ruíz & Agustín L. Herrera-May & María Elena Tejeda-del-Cueto, 2021. "Numerical and Experimental Analysis of the Effect of a Swirler with a High Swirl Number in a Biogas Combustor," Energies, MDPI, vol. 14(10), pages 1-21, May.
    18. Rubén Díez-Montero & Lucas Vassalle & Fabiana Passos & Antonio Ortiz & María Jesús García-Galán & Joan García & Ivet Ferrer, 2020. "Scaling-Up the Anaerobic Digestion of Pretreated Microalgal Biomass within a Water Resource Recovery Facility," Energies, MDPI, vol. 13(20), pages 1-17, October.
    19. Moon, Myounghoon & Park, Won-Kun & Lee, Soo Youn & Hwang, Kyung-Ran & Lee, Sangmin & Kim, Min-Sik & Kim, Bolam & Oh, You-Kwan & Lee, Jin-Suk, 2022. "Utilization of whole microalgal biomass for advanced biofuel and biorefinery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Mohamed A. Zaki & Mohamed Ashour & Ahmed M. M. Heneash & Mohamed M. Mabrouk & Ahmed E. Alprol & Hanan M. Khairy & Abdelaziz M. Nour & Abdallah Tageldein Mansour & Hesham A. Hassanien & Ahmed Gaber & M, 2021. "Potential Applications of Native Cyanobacterium Isolate ( Arthrospira platensis NIOF17/003) for Biodiesel Production and Utilization of Its Byproduct in Marine Rotifer ( Brachionus plicatilis ) Produc," Sustainability, MDPI, vol. 13(4), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14094-:d:956617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.