IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p12973-d938096.html
   My bibliography  Save this article

Evaluation Methods for Water Resource Suitability in Territorial Spatial Planning: A Case Study of Baiyin City in a Semi-Arid Region

Author

Listed:
  • Jiuyi Li

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

Water resources are a major factor in the spatial layout of agricultural production and urban construction, which is an important part of China’s ongoing territorial spatial planning. In order to assess the constraining and guiding effects of water resources on territorial spatial planning, water resources suitability evaluation needs to be carried out at the grid scale. Traditional basin or regional-scale indicators of water resources cannot satisfy the requirements with high spatial accuracy in territorial spatial planning, because the internal differences could not be described. In this study, irrigation water supply cost index (CIA) and urban water supply cost index (CIU) were evaluated to characterize the affordability of potential water supply costs by simulating of optimal water supply path. Further, grid-scale indexes of water resource suitability for agricultural production (WRSA) and for urban construction (WRSU) were constructed. The grades of WRSA and WRSU were classified at a 20 m grid scale in Baiyin City. The areas of water resources that were suitable, relatively suitable, less suitable, and unsuitable for agricultural production were 381.0 km 2 , 3354.7 km 2 , 3663.9 km 2 , and 12,700.7 km 2 , respectively, accounting for 1.9%, 16.7%, 18.2%, and 63.2% of the total area of Baiyin City. The areas of water resources that were suitable, relatively suitable, less suitable, and unsuitable for urban construction were 1657.7 km 2 , 4184.5 km 2 , 1177.7 km 2 , and 13,075.7 km 2 , respectively, accounting for 8.2%, 20.8%, 5.9%, and 65.1% of the total area of Baiyin City. Coupling analysis with land use and land resources suitability were carried out in this study, which showed that the grid-scale WRSA and WRSU could well characterize the spatial differences of water resources suitability for agricultural production and urban construction. The results of the Geodetector-based study show that the WRSA and WRSU indicators have better explanatory power for the land-use spatial distribution compared to indicators such as water distance. Therefore, the indexes could provide scientific support to delimit agricultural space and urban space, and are effective means of “determining regional functions by water resources“ in territorial spatial planning. Furthermore, the indexes could be applied to other arid and semi-arid areas, and also hilly areas, where water supply suitability plays a restrictive role in agricultural production and urban construction.

Suggested Citation

  • Jiuyi Li, 2022. "Evaluation Methods for Water Resource Suitability in Territorial Spatial Planning: A Case Study of Baiyin City in a Semi-Arid Region," IJERPH, MDPI, vol. 19(19), pages 1-20, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12973-:d:938096
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/12973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/12973/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Yansui & Zhou, Yang, 2021. "Territory spatial planning and national governance system in China," Land Use Policy, Elsevier, vol. 102(C).
    2. Li, Sinan & Zhao, Xiaoqing & Pu, Junwei & Miao, Peipei & Wang, Qian & Tan, Kun, 2021. "Optimize and control territorial spatial functional areas to improve the ecological stability and total environment in karst areas of Southwest China," Land Use Policy, Elsevier, vol. 100(C).
    3. Rijsberman, Frank R., 2006. "Water scarcity: Fact or fiction?," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 5-22, February.
    4. DANG, Lijuan & XU, Yong & WANG, Zhiqiang, 2014. "The Population Carrying Capacity of Water Resources in Yulin City," Asian Agricultural Research, USA-China Science and Culture Media Corporation, vol. 6(12), pages 1-8, December.
    5. Zhenbo Wang, 2018. "Land Spatial Development Based on Carrying Capacity, Land Development Potential, and Efficiency of Urban Agglomerations in China," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    6. Harris, Jonathan M. & Kennedy, Scott, 1999. "Carrying capacity in agriculture: global and regional issues," Ecological Economics, Elsevier, vol. 29(3), pages 443-461, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lirui Zhang & Bo Wang & Songlin Zhang, 2024. "Risk Assessment and Attribution Analysis of Potentially Toxic Elements in Soil of Dongdagou, Baiyin, Gansu Province, China," Sustainability, MDPI, vol. 16(4), pages 1-19, February.
    2. Jaime Martínez-Valderrama & Rolando Gartzia & Jorge Olcina & Emilio Guirado & Javier Ibáñez & Fernando T. Maestre, 2024. "Uberizing Agriculture in Drylands: A Few Enriched, Everyone Endangered," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 193-214, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zuo & Li, Jiaming, 2022. "Spatial suitability and multi-scenarios for land use: Simulation and policy insights from the production-living-ecological perspective," Land Use Policy, Elsevier, vol. 119(C).
    2. Wei-Ling Hsu & Xijuan Shen & Haiying Xu & Chunmei Zhang & Hsin-Lung Liu & Yan-Chyuan Shiau, 2021. "Integrated Evaluations of Resource and Environment Carrying Capacity of the Huaihe River Ecological and Economic Belt in China," Land, MDPI, vol. 10(11), pages 1-21, October.
    3. Dinghua Ou & Qi Zhang & Yijie Wu & Jing Qin & Jianguo Xia & Ouping Deng & Xuesong Gao & Jinhu Bian & Shangqi Gong, 2021. "Construction of a Territorial Space Classification System Based on Spatiotemporal Heterogeneity of Land Use and Its Superior Territorial Space Functions and Their Dynamic Coupling: Case Study on Qiong," IJERPH, MDPI, vol. 18(17), pages 1-27, August.
    4. Zhang, Jing & Li, Sinan & Lin, Naifa & Lin, Yue & Yuan, Shaofeng & Zhang, Ling & Zhu, Jinxia & Wang, Ke & Gan, Muye & Zhu, Congmou, 2022. "Spatial identification and trade-off analysis of land use functions improve spatial zoning management in rapid urbanized areas, China," Land Use Policy, Elsevier, vol. 116(C).
    5. Zhipeng Yang & Shijun Wang & Meng Guo & Junfeng Tian & Yingjie Zhang, 2021. "Spatiotemporal Differentiation of Territorial Space Development Intensity and Its Habitat Quality Response in Northeast China," Land, MDPI, vol. 10(6), pages 1-20, May.
    6. Yunlu Jiang & Haotian He & Haoyu Zhang & Yuee Cao & Ge Shi & Lin Feng & Jianjun Yang, 2023. "Study on the Evolution and Optimization of the Spatial Structure of the Oasis in the Arid Area: A Case Study of the Aksu River Basin in China," IJERPH, MDPI, vol. 20(6), pages 1-22, March.
    7. Yanbo, Qu & Shilei, Wang & Yaya, Tian & Guanghui, Jiang & Tao, Zhou & Liang, Meng, 2023. "Territorial spatial planning for regional high-quality development – An analytical framework for the identification, mediation and transmission of potential land utilization conflicts in the Yellow Ri," Land Use Policy, Elsevier, vol. 125(C).
    8. Mingyang Nan & Jun Chen, 2022. "Research Progress, Hotspots and Trends of Land Use under the Background of Ecological Civilization in China: Visual Analysis Based on the CNKI Database," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    9. Lauri Ahopelto & Noora Veijalainen & Joseph H. A. Guillaume & Marko Keskinen & Mika Marttunen & Olli Varis, 2019. "Can There be Water Scarcity with Abundance of Water? Analyzing Water Stress during a Severe Drought in Finland," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
    10. Immerzeel, W.W. & Gaur, A. & Zwart, S.J., 2008. "Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment," Agricultural Water Management, Elsevier, vol. 95(1), pages 11-24, January.
    11. Antonio J. Castro & Cristina Quintas-Soriano & Jodi Brandt & Carla L. Atkinson & Colden V. Baxter & Morey Burnham & Benis N. Egoh & Marina García-Llorente & Jason P. Julian & Berta Martín-López & Feli, 2018. "Applying Place-Based Social-Ecological Research to Address Water Scarcity: Insights for Future Research," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    12. Shuangqing Sheng & Wei Song & Hua Lian & Lei Ning, 2022. "Review of Urban Land Management Based on Bibliometrics," Land, MDPI, vol. 11(11), pages 1-25, November.
    13. Uche T. Okpara & Lindsay C. Stringer & Andrew J. Dougill & Mohammed D. Bila, 2015. "Conflicts about water in Lake Chad: Are environmental, vulnerability and security issues linked?," Progress in Development Studies, , vol. 15(4), pages 308-325, October.
    14. Dong Chen & Rongrong Liu & Maoxian Zhou, 2023. "Delineation of Urban Growth Boundary Based on Habitat Quality and Carbon Storage: A Case Study of Weiyuan County in Gansu, China," Land, MDPI, vol. 12(5), pages 1-17, May.
    15. Bao Meng & Shaoyao Zhang & Wei Deng & Li Peng & Peng Zhou & Hao Zhang, 2023. "Identification and Analysis of Territorial Spatial Utilization Conflicts in Yibin Based on Multidimensional Perspective," Land, MDPI, vol. 12(5), pages 1-20, May.
    16. Jinping Lin & Meiqi Zhou & Huasong Luo & Bowen Zhang & Jiajia Feng & Qi Yi, 2022. "Analysis of the Emotional Identification Mechanism of Campus Edible Landscape from the Perspective of Emotional Geography: An Empirical Study of a Chinese University Town," IJERPH, MDPI, vol. 19(18), pages 1-16, September.
    17. Gong, Feng & Wang, Wenbin & Li, Hao & Xia, Dawei (David) & Dai, Qingwen & Wu, Xinlin & Wang, Mingzhou & Li, Jian & Papavassiliou, Dimitrios V. & Xiao, Rui, 2020. "Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification," Applied Energy, Elsevier, vol. 261(C).
    18. Yu, Zhenning & She, Shuoqi & Xia, Chuyu & Luo, Jiaojiao, 2023. "How to solve the dilemma of China’s land fallow policy: Application of voluntary bidding mode in the Yangtze River Delta of China," Land Use Policy, Elsevier, vol. 125(C).
    19. Hermann Lotze‐Campen & Christoph Müller & Alberte Bondeau & Stefanie Rost & Alexander Popp & Wolfgang Lucht, 2008. "Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach," Agricultural Economics, International Association of Agricultural Economists, vol. 39(3), pages 325-338, November.
    20. Lijuan Zhang & Tatyana Ponomarenko, 2023. "Directions for Sustainable Development of China’s Coal Industry in the Post-Epidemic Era," Sustainability, MDPI, vol. 15(8), pages 1-32, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12973-:d:938096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.