IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p12893-d936575.html
   My bibliography  Save this article

Alveolar Type II Cell Damage and Nrf2-SOD1 Pathway Downregulation Are Involved in PM 2.5 -Induced Lung Injury in Rats

Author

Listed:
  • Rui Niu

    (Medical College, Xi’an Peihua University, Xi’an 710061, China
    Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
    These authors have contributed equally to this work.)

  • Jie Cheng

    (Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
    These authors have contributed equally to this work.)

  • Jian Sun

    (Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Fan Li

    (Basic Medical Experiment Teaching Center, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China)

  • Huanle Fang

    (Medical College, Xi’an Peihua University, Xi’an 710061, China)

  • Ronghui Lei

    (School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China)

  • Zhenxing Shen

    (Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Hao Hu

    (Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
    Basic Medical Experiment Teaching Center, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
    Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China)

  • Jianjun Li

    (Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China)

Abstract

The general toxicity of fine particulate matter (PM 2.5 ) has been intensively studied, but its pulmonary toxicities are still not fully understood. To investigate the changes of lung tissue after PM 2.5 exposure and identify the potential mechanisms of pulmonary toxicity, PM 2.5 samples were firstly collected and analyzed. Next, different doses of PM 2.5 samples (5 mg/kg, 10 mg/kg, 20 mg/kg) were intratracheally instilled into rats to simulate lung inhalation of polluted air. After instillation for eight weeks, morphological alterations of the lung were examined, and the levels of oxidative stress were detected. The data indicated that the major contributors to PM 2.5 mass were organic carbon, elemental carbon, sulfate, nitrate, and ammonium. Different concentrations of PM 2.5 could trigger oxidative stress through increasing reactive oxygen species (ROS) and 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels, and decreasing expression of antioxidant-related proteins (nuclear factor erythroid 2-related factor 2 (Nrf2), superoxide dismutase 1 (SOD1) and catalase). Histochemical staining and transmission electron microscopy displayed pulmonary inflammation, collagen deposition, mitochondrial swelling, and a decreasing number of multilamellar bodies in alveolar type II cells after PM 2.5 exposure, which was related to PM 2.5 -induced oxidative stress. These results provide a basis for a better understanding of pulmonary impairment in response to PM 2.5 .

Suggested Citation

  • Rui Niu & Jie Cheng & Jian Sun & Fan Li & Huanle Fang & Ronghui Lei & Zhenxing Shen & Hao Hu & Jianjun Li, 2022. "Alveolar Type II Cell Damage and Nrf2-SOD1 Pathway Downregulation Are Involved in PM 2.5 -Induced Lung Injury in Rats," IJERPH, MDPI, vol. 19(19), pages 1-14, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12893-:d:936575
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/12893/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/12893/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    2. Héctor Jorquera & Ana María Villalobos, 2020. "Combining Cluster Analysis of Air Pollution and Meteorological Data with Receptor Model Results for Ambient PM 2.5 and PM 10," IJERPH, MDPI, vol. 17(22), pages 1-25, November.
    3. Ellen Banzhaf & Sally Anderson & Gwendoline Grandin & Richard Hardiman & Anne Jensen & Laurence Jones & Julius Knopp & Gregor Levin & Duncan Russel & Wanben Wu & Jun Yang & Marianne Zandersen, 2022. "Urban-Rural Dependencies and Opportunities to Design Nature-Based Solutions for Resilience in Europe and China," Land, MDPI, vol. 11(4), pages 1-25, March.
    4. Rogers Kanee & Precious Ede & Omosivie Maduka & Golden Owhonda & Eric Aigbogun & Khalaf F. Alsharif & Ahmed H. Qasem & Shadi S. Alkhayyat & Gaber El-Saber Batiha, 2021. "Polycyclic Aromatic Hydrocarbon Levels in Wistar Rats Exposed to Ambient Air of Port Harcourt, Nigeria: An Indicator for Tissue Toxicity," IJERPH, MDPI, vol. 18(11), pages 1-21, May.
    5. Hongjun Yu & Jiali Cheng & Shelby Paige Gordon & Ruopeng An & Miao Yu & Xiaodan Chen & Qingli Yue & Jun Qiu, 2018. "Impact of Air Pollution on Sedentary Behavior: A Cohort Study of Freshmen at a University in Beijing, China," IJERPH, MDPI, vol. 15(12), pages 1-12, December.
    6. Stefani Kulebanova & Jana Prodanova & Aleksandra Dedinec & Trifce Sandev & Desheng Wu & Ljupco Kocarev, 2024. "Media Sentiment on Air Pollution: Seasonal Trends in Relation to PM10 Levels," Sustainability, MDPI, vol. 16(15), pages 1-20, July.
    7. Sowmya Malamardi & Katrina A. Lambert & Attahalli Shivanarayanaprasad Praveena & Mahesh Padukudru Anand & Bircan Erbas, 2022. "Time Trends of Greenspaces, Air Pollution, and Asthma Prevalence among Children and Adolescents in India," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    8. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    9. Liu, Haoming & Salvo, Alberto, 2017. "Severe Air Pollution and School Absences: Longitudinal Data on Expatriates in North China," IZA Discussion Papers 11134, Institute of Labor Economics (IZA).
    10. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    11. K. K. Shukla & Raju Attada & Aman W. Khan & Prashant Kumar, 2022. "Evaluation of extreme dust storm over the northwest Indo-Gangetic plain using WRF-Chem model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1887-1910, February.
    12. Shichun Xu & Wenwen Zhang & Qinbin Li & Bin Zhao & Shuxiao Wang & Ruyin Long, 2017. "Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    13. Keshab Thapa & Melanie Laforest & Catherine Banning & Shirley Thompson, 2024. "“Where the Moose Were”: Fort William First Nation’s Ancestral Land, Two–Eyed Seeing, and Industrial Impacts," Land, MDPI, vol. 13(12), pages 1-28, November.
    14. Bedoya-Maya, Felipe & Calatayud, Agustina & González Mejia, Vileydy, 2022. "Estimating the effect of urban road congestion on air quality in Latin America," IDB Publications (Working Papers) 12468, Inter-American Development Bank.
    15. Ling-Yun He & Xiao-Feng Qi, 2021. "Environmental Courts, Environment and Employment: Evidence from China," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    16. Wang, Qiang & Kwan, Mei-Po & Zhou, Kan & Fan, Jie & Wang, Yafei & Zhan, Dongsheng, 2019. "Impacts of residential energy consumption on the health burden of household air pollution: Evidence from 135 countries," Energy Policy, Elsevier, vol. 128(C), pages 284-295.
    17. Weicong Fu & Qunyue Liu & Cecil Konijnendijk van den Bosch & Ziru Chen & Zhipeng Zhu & Jinda Qi & Mo Wang & Emily Dang & Jianwen Dong, 2018. "Long-Term Atmospheric Visibility Trends and Their Relations to Socioeconomic Factors in Xiamen City, China," IJERPH, MDPI, vol. 15(10), pages 1-16, October.
    18. Calvo, Rubén & Álamos, Nicolás & Huneeus, Nicolás & O'Ryan, Raúl, 2022. "Energy poverty effects on policy-based PM2.5 emissions mitigation in southern and central Chile," Energy Policy, Elsevier, vol. 161(C).
    19. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    20. Shen Zhao & Yong Xu, 2019. "Exploring the Spatial Variation Characteristics and Influencing Factors of PM 2.5 Pollution in China: Evidence from 289 Chinese Cities," Sustainability, MDPI, vol. 11(17), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12893-:d:936575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.