IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p12092-d924036.html
   My bibliography  Save this article

Evaluation and Projection of Surface PM 2.5 and Its Exposure on Population in Asia Based on the CMIP6 GCMs

Author

Listed:
  • Ying Xu

    (National Climate Center, China Meteorological Administration, Beijing 100081, China
    Laboratory for Climate Studies, China Meteorological Administration, Beijing 100081, China)

  • Jie Wu

    (School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China)

  • Zhenyu Han

    (National Climate Center, China Meteorological Administration, Beijing 100081, China
    Laboratory for Climate Studies, China Meteorological Administration, Beijing 100081, China)

Abstract

This paper evaluates the historical simulated surface concentrations of particulate matter small than 2.5 µm in diameter (PM 2.5 ) and its components (black carbon (BC), dust, SO 4 , and organic aerosol (OA)) in Asia, which come from Coupled Model Intercomparison Project Phase 6 (CMIP6). In addition, future projected changes of surface PM 2.5 and its components, as well as their exposure to population, under the different Shared Socioeconomic Pathway (SSP) scenarios are also provided. Results show that the simulated spatial distribution of surface PM 2.5 concentrations is consistent with the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) and Socioeconomic Data and Applications Center (SEDAC). The model spreads are small/large over the regions with low/high climatic mean surface PM 2.5 concentrations, i.e., Northern Asia/Saudi Arabia, Iran, and Xinjiang Province of China. The multi-model ensemble of CMIP6 reproduces the main features of annual cycles and seasonal variations in Asia and its sub-regions. Under the scenarios of SSP1-2.6, SSP2-4.5, and SSP5-8.5, compared to the present-day period of 1995–2014, annual mean surface PM 2.5 concentrations are projected to decrease in Asia, with obvious differences among the scenarios. Meanwhile, the magnitudes and timings of changes at the regional scale are quite different, with the largest decreases in South Asia (SAS). Under SSP3-7.0, the increase of surface PM 2.5 concentrations in SAS is the largest, with the increase value of 8 μg/m 3 in 2050; while under SSP370-lowNTCF, which assumes stronger levels of air quality control measures relative to the SSP3-7.0, the decreases of surface PM 2.5 concentrations in SAS, East Asia (EAS) and Southeast Asia (SEAS) are the largest. The characteristics of seasonal trends are consistent with that of the annual trend. The trends in the concentrations of surface PM 2.5 and its components are similar. The population-weighted average values of surface PM 2.5 concentrations are projected to decrease in Central Asia (CAS), EAS, North Asia (NAS), and SEAS, and it indicates that the surface PM 2.5 concentrations over the most populated area of Asia will decrease. In SAS, because of its large population, the impact of air pollutants on human health is still disastrous in the future. In summary, the surface PM 2.5 concentrations over the most area of Asia will decrease, which is beneficial to air quality and human health; under SSP370-lowNTCF, the reduction of short-lived climate forcers (SLCFs) will further improve air quality.

Suggested Citation

  • Ying Xu & Jie Wu & Zhenyu Han, 2022. "Evaluation and Projection of Surface PM 2.5 and Its Exposure on Population in Asia Based on the CMIP6 GCMs," IJERPH, MDPI, vol. 19(19), pages 1-18, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12092-:d:924036
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/12092/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/12092/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camilla W. Stjern & Øivind Hodnebrog & Gunnar Myhre & Ignacio Pisso, 2023. "The turbulent future brings a breath of fresh air," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    2. Ellen Banzhaf & Sally Anderson & Gwendoline Grandin & Richard Hardiman & Anne Jensen & Laurence Jones & Julius Knopp & Gregor Levin & Duncan Russel & Wanben Wu & Jun Yang & Marianne Zandersen, 2022. "Urban-Rural Dependencies and Opportunities to Design Nature-Based Solutions for Resilience in Europe and China," Land, MDPI, vol. 11(4), pages 1-25, March.
    3. Rogers Kanee & Precious Ede & Omosivie Maduka & Golden Owhonda & Eric Aigbogun & Khalaf F. Alsharif & Ahmed H. Qasem & Shadi S. Alkhayyat & Gaber El-Saber Batiha, 2021. "Polycyclic Aromatic Hydrocarbon Levels in Wistar Rats Exposed to Ambient Air of Port Harcourt, Nigeria: An Indicator for Tissue Toxicity," IJERPH, MDPI, vol. 18(11), pages 1-21, May.
    4. Stefani Kulebanova & Jana Prodanova & Aleksandra Dedinec & Trifce Sandev & Desheng Wu & Ljupco Kocarev, 2024. "Media Sentiment on Air Pollution: Seasonal Trends in Relation to PM10 Levels," Sustainability, MDPI, vol. 16(15), pages 1-20, July.
    5. Sowmya Malamardi & Katrina A. Lambert & Attahalli Shivanarayanaprasad Praveena & Mahesh Padukudru Anand & Bircan Erbas, 2022. "Time Trends of Greenspaces, Air Pollution, and Asthma Prevalence among Children and Adolescents in India," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    6. Liu, Haoming & Salvo, Alberto, 2017. "Severe Air Pollution and School Absences: Longitudinal Data on Expatriates in North China," IZA Discussion Papers 11134, Institute of Labor Economics (IZA).
    7. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    8. K. K. Shukla & Raju Attada & Aman W. Khan & Prashant Kumar, 2022. "Evaluation of extreme dust storm over the northwest Indo-Gangetic plain using WRF-Chem model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1887-1910, February.
    9. Keshab Thapa & Melanie Laforest & Catherine Banning & Shirley Thompson, 2024. "“Where the Moose Were”: Fort William First Nation’s Ancestral Land, Two–Eyed Seeing, and Industrial Impacts," Land, MDPI, vol. 13(12), pages 1-28, November.
    10. Bedoya-Maya, Felipe & Calatayud, Agustina & González Mejia, Vileydy, 2022. "Estimating the effect of urban road congestion on air quality in Latin America," IDB Publications (Working Papers) 12468, Inter-American Development Bank.
    11. Ling-Yun He & Xiao-Feng Qi, 2021. "Environmental Courts, Environment and Employment: Evidence from China," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    12. Wang, Qiang & Kwan, Mei-Po & Zhou, Kan & Fan, Jie & Wang, Yafei & Zhan, Dongsheng, 2019. "Impacts of residential energy consumption on the health burden of household air pollution: Evidence from 135 countries," Energy Policy, Elsevier, vol. 128(C), pages 284-295.
    13. Weicong Fu & Qunyue Liu & Cecil Konijnendijk van den Bosch & Ziru Chen & Zhipeng Zhu & Jinda Qi & Mo Wang & Emily Dang & Jianwen Dong, 2018. "Long-Term Atmospheric Visibility Trends and Their Relations to Socioeconomic Factors in Xiamen City, China," IJERPH, MDPI, vol. 15(10), pages 1-16, October.
    14. Calvo, Rubén & Álamos, Nicolás & Huneeus, Nicolás & O'Ryan, Raúl, 2022. "Energy poverty effects on policy-based PM2.5 emissions mitigation in southern and central Chile," Energy Policy, Elsevier, vol. 161(C).
    15. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    16. Wei Xue & Qingming Zhan & Qi Zhang & Zhonghua Wu, 2019. "Spatiotemporal Variations of Particulate and Gaseous Pollutants and Their Relations to Meteorological Parameters: The Case of Xiangyang, China," IJERPH, MDPI, vol. 17(1), pages 1-23, December.
    17. Ying Su & Chunyan Lu & Xiaoqing Lin & Lianxiu Zhong & Yibin Gao & Yifan Lei, 2020. "Analysis of Spatio-temporal Characteristics and Driving Forces of Air Quality in the Northern Coastal Comprehensive Economic Zone, China," Sustainability, MDPI, vol. 12(2), pages 1-23, January.
    18. Yang, Aoxi & Wang, Yahui, 2023. "Transition of household cooking energy in China since the 1980s," Energy, Elsevier, vol. 270(C).
    19. Rafał Kozłowski & Mirosław Szwed & Aneta Kozłowska & Joanna Przybylska & Tomasz Mach, 2024. "Quality Management System in Air Quality Measurements for Sustainable Development," Sustainability, MDPI, vol. 16(17), pages 1-15, August.
    20. Damm, Yannic Rudá & Börner, Jan & Gerber, Nicolas, 2021. "Health Effects of the Amazon Soy Moratorium," 2021 Conference, August 17-31, 2021, Virtual 315401, International Association of Agricultural Economists.

    More about this item

    Keywords

    CMIP6; PM 2.5 ; projection; population exposure;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12092-:d:924036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.