IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i18p11582-d914868.html
   My bibliography  Save this article

Reservoir Regulation for Ecological Protection and Remediation: A Case Study of the Irtysh River Basin, China

Author

Listed:
  • Dan Wang

    (School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
    State Key Laboratory of Simulations and Regulations of Water Cycles in River Basins (SKL-WAC), China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China)

  • Shuanghu Zhang

    (State Key Laboratory of Simulations and Regulations of Water Cycles in River Basins (SKL-WAC), China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China)

  • Guoli Wang

    (School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China)

  • Yin Liu

    (School of Environment and Ecology, Jiangsu Open University, Nanjing 210036, China)

  • Hao Wang

    (State Key Laboratory of Simulations and Regulations of Water Cycles in River Basins (SKL-WAC), China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China)

  • Jingjing Gu

    (State Key Laboratory of Simulations and Regulations of Water Cycles in River Basins (SKL-WAC), China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China)

Abstract

Hydrological processes play a key role in ecosystem stability in arid regions. The operation of water conservancy projects leads to changes in the natural hydrological processes, thereby damaging the ecosystem balance. Ecological regulation is an effective non-engineering measure to relieve the influence of water conservancy projects on ecosystems. However, there are still some problems, such as an insufficient understanding of hydraulic processes and difficulty evaluating the application effects. In this study, the theory of ecological reservoir regulation coupled with hydrological and ecological processes was examined and ecological protection and remediation were investigated using the valley forests and grasslands in the Irtysh River Basin as a case study. The results demonstrated that (1) to meet the demand of the hydrological processes in the valley forests and grasslands, in terms of ecological regulation, the peak flow and flood peak duration of the reservoir, named 635, in the Irtysh River Basin should be 1000 m 3 s −1 and 168 h, respectively, and the total water volume of ecological regulation should be 605 million m³. Ecological regulation can guarantee that the floodplain range reaches 64.3% of the core area of ecological regulation and the inundation duration in most areas is between 4–8 d; (2) an insufficient ecological water supply would seriously affect the inundation effects. The inundation areas were reduced by 2.8, 5.1, 10.3, and 19.3%, respectively, under the four insufficient ecological water supply conditions (528, 482, 398, and 301 million m 3 ), and the inundation duration showed a general decreasing trend; (3) the construction of ecological sluices and the optimization of the reservoir regulation rules could effectively relieve the influences of an insufficient ecological water supply. At water supply volumes of 528 and 482 million m 3 , the regulation rules should assign priority to the flood peak flow; at water supply volumes of 398 and 301 million m 3 , the regulation rules should assign priority to the flood peak duration. Consequently, this study provides a reference for ecological protection in arid regions and the optimization of ecological regulation theories.

Suggested Citation

  • Dan Wang & Shuanghu Zhang & Guoli Wang & Yin Liu & Hao Wang & Jingjing Gu, 2022. "Reservoir Regulation for Ecological Protection and Remediation: A Case Study of the Irtysh River Basin, China," IJERPH, MDPI, vol. 19(18), pages 1-24, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11582-:d:914868
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/18/11582/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/18/11582/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Xu, 2020. "Study on Multi-Objective Operation Strategy for Multi-Reservoirs in Small-Scale Watershed Considering Ecological Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4725-4738, December.
    2. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2018. "Optimization of hydropower reservoirs operation balancing generation benefit and ecological requirement with parallel multi-objective genetic algorithm," Energy, Elsevier, vol. 153(C), pages 706-718.
    3. Byungwoong Choi & Seung Se Choi, 2021. "Integrated Hydraulic Modelling, Water Quality Modelling and Habitat Assessment for Sustainable Water Management: A Case Study of the Anyang-Cheon Stream, Korea," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    4. Jinjin Gu & Mo Li & Ping Guo & Guohe Huang, 2016. "Risk Assessment for Ecological Planning of Arid Inland River Basins Under Hydrological and Management Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1415-1431, March.
    5. Jinjin Gu & Mo Li & Ping Guo & Guohe Huang, 2016. "Risk Assessment for Ecological Planning of Arid Inland River Basins Under Hydrological and Management Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1415-1431, March.
    6. Ding, Ziyu & Fang, Guohua & Wen, Xin & Tan, Qiaofeng & Huang, Xianfeng & Lei, Xiaohui & Tian, Yu & Quan, Jin, 2018. "A novel operation chart for cascade hydropower system to alleviate ecological degradation in hydrological extremes," Ecological Modelling, Elsevier, vol. 384(C), pages 10-22.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lifang Wang & Zhenlong Nie & Min Liu & Le Cao & Pucheng Zhu & Qinlong Yuan, 2022. "Rational Allocation of Water Resources in the Arid Area of Northwestern China Based on Numerical Simulations," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    2. Yan, Dong & Chen, Lin & Sun, Huaiwei & Liao, Weihong & Chen, Haorui & Wei, Guanghui & Zhang, Wenxin & Tuo, Ye, 2022. "Allocation of ecological water rights considering ecological networks in arid watersheds: A framework and case study of Tarim River basin," Agricultural Water Management, Elsevier, vol. 267(C).
    3. Liu, Xiao & Li, Mo & Guo, Ping & Zhang, Zhongxue, 2019. "Optimization of water and fertilizer coupling system based on rice grain quality," Agricultural Water Management, Elsevier, vol. 221(C), pages 34-46.
    4. Wei Xu, 2020. "Study on Multi-Objective Operation Strategy for Multi-Reservoirs in Small-Scale Watershed Considering Ecological Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4725-4738, December.
    5. Hu Hu & Kan Yang & Lyuwen Su & Zhe Yang, 2019. "A Novel Adaptive Multi-Objective Particle Swarm Optimization Based on Decomposition and Dominance for Long-term Generation Scheduling of Cascade Hydropower System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 4007-4026, September.
    6. Yi Liu & Zhiqiang Jiang & Zhongkai Feng & Yuyun Chen & Hairong Zhang & Ping Chen, 2019. "Optimization of Energy Storage Operation Chart of Cascade Reservoirs with Multi-Year Regulating Reservoir," Energies, MDPI, vol. 12(20), pages 1-20, October.
    7. Jiahong Li & Xiaohui Lei & Yu Qiao & Aiqing Kang & Peiru Yan, 2020. "The Water Status in China and an Adaptive Governance Frame for Water Management," IJERPH, MDPI, vol. 17(6), pages 1-19, March.
    8. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Garrote, Luis, 2019. "Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants," Applied Energy, Elsevier, vol. 256(C).
    9. Hao, Ying & Dong, Lei & Liang, Jun & Liao, Xiaozhong & Wang, Lijie & Shi, Lefeng, 2020. "Power forecasting-based coordination dispatch of PV power generation and electric vehicles charging in microgrid," Renewable Energy, Elsevier, vol. 155(C), pages 1191-1210.
    10. Dengiz, Thomas & Jochem, Patrick & Fichtner, Wolf, 2021. "Demand response through decentralized optimization in residential areas with wind and photovoltaics," Energy, Elsevier, vol. 223(C).
    11. Hamid Reza Yavari & Amir Robati, 2021. "Developing Water Cycle Algorithm for Optimal Operation in Multi-reservoirs Hydrologic System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2281-2303, June.
    12. Wu, Xinyu & Zhang, Jiaao & Wei, Xingchen & Cheng, Chuntian & Cheng, Ruixiang, 2024. "Short-Term Hydro-Wind-PV peak shaving scheduling using approximate hydropower output characters," Renewable Energy, Elsevier, vol. 236(C).
    13. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian, 2018. "Optimal allocation of hydropower and hybrid electricity injected from inter-regional transmission lines among multiple receiving-end power grids in China," Energy, Elsevier, vol. 162(C), pages 444-452.
    14. Priyanka Majumder & Mrinmoy Majumder & Apu Kumar Saha & Soumitra Nath, 2020. "Selection of features for analysis of reliability of performance in hydropower plants: a multi-criteria decision making approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3239-3265, April.
    15. Yang, Tongxu & Zhang, Limei & Zhen, Linteng & Liu, Yongfu & Song, Qianqian & Tang, Wei, 2021. "Fast microgrids formation of distribution network with high penetration of DERs considering reliability," Energy, Elsevier, vol. 236(C).
    16. Xu, Bin & Zhu, Feilin & Zhong, Ping-an & Chen, Juan & Liu, Weifeng & Ma, Yufei & Guo, Le & Deng, Xiaoliang, 2019. "Identifying long-term effects of using hydropower to complement wind power uncertainty through stochastic programming," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Chengjun Wu & Guohua Fang & Tao Liao & Xianfeng Huang & Bo Qu, 2020. "Integrated Software Development and Case Studies for Optimal Operation of Cascade Reservoir within the Environmental Flow Constraints," Sustainability, MDPI, vol. 12(10), pages 1-16, May.
    18. Zengchuan Dong & Xiaokuan Ni & Mufeng Chen & Hongyi Yao & Wenhao Jia & Jiaxing Zhong & Li Ren, 2021. "Time-varying Decision-making Method for Multi-objective Regulation of Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3411-3430, August.
    19. He, Zhongzheng & Zhou, Jianzhong & Xie, Mengfei & Jia, Benjun & Bao, Zhengfeng & Qin, Hui & Zhang, Hairong, 2019. "Study on guaranteed output constraints in the long term joint optimal scheduling for the hydropower station group," Energy, Elsevier, vol. 185(C), pages 1210-1224.
    20. Zhongkai Feng & Wenjing Niu & Sen Wang & Chuntian Cheng & Zhenguo Song, 2019. "Mixed Integer Linear Programming Model for Peak Operation of Gas-Fired Generating Units with Disjoint-Prohibited Operating Zones," Energies, MDPI, vol. 12(11), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11582-:d:914868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.