IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i9p4946-d549615.html
   My bibliography  Save this article

Estimation of Undetected Asymptomatic COVID-19 Cases in South Korea Using a Probabilistic Model

Author

Listed:
  • Chanhee Lee

    (Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea)

  • Catherine Apio

    (Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea)

  • Taesung Park

    (Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
    Department of Statistics, Seoul National University, Seoul 08826, Korea)

Abstract

Increasing evidence shows that many infections of COVID-19 are asymptomatic, becoming a global challenge, since asymptomatic infections have the same infectivity as symptomatic infections. We developed a probabilistic model for estimating the proportion of undetected asymptomatic COVID-19 patients in the country. We considered two scenarios: one is conservative and the other is nonconservative. By combining the above two scenarios, we gave an interval estimation of 0.0001–0.0027 and in terms of the population, 5200–139,900 is the number of undetected asymptomatic cases in South Korea as of 2 February 2021. In addition, we provide estimates for total cases of COVID-19 in South Korea. Combination of undetected asymptomatic cases and undetected symptomatic cases to the number of confirmed cases (78,844 cases on 2 February 2021) shows that 0.17–0.42% (89,244–218,744) of the population have COVID-19. In conclusion, to control and understand the true ongoing reality of the pandemic, it is of outermost importance to focus on the ratio of undetected asymptomatic cases in the total population.

Suggested Citation

  • Chanhee Lee & Catherine Apio & Taesung Park, 2021. "Estimation of Undetected Asymptomatic COVID-19 Cases in South Korea Using a Probabilistic Model," IJERPH, MDPI, vol. 18(9), pages 1-9, May.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:9:p:4946-:d:549615
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/9/4946/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/9/4946/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea Saltelli, 2002. "Sensitivity Analysis for Importance Assessment," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 579-590, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Kunz, Nathan & Chesney, Thomas & Trautrims, Alexander & Gold, Stefan, 2023. "Adoption and transferability of joint interventions to fight modern slavery in food supply chains," International Journal of Production Economics, Elsevier, vol. 258(C).
    4. Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
    5. Gonnet, Gaston H. & Stewart, John & Lafleur, Joseph & Keith, Stephen & McLellan, Mark & Jiang-Gorsline, David & Snider, Tim, 2021. "Analysis of feature influence on Covid-19 Death Rate Per Country Using a Novel Orthogonalization Technique," MetaArXiv 4kw2n, Center for Open Science.
    6. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    7. Kamoonpuri, Sana Zehra & Sengar, Anita, 2023. "Hi, May AI help you? An analysis of the barriers impeding the implementation and use of artificial intelligence-enabled virtual assistants in retail," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    8. Chen, Yaqian & Nakao, Hiroya & Kang, Yanmei, 2024. "Emergence of pathological beta oscillation and its uncertainty quantification in a time-delayed feedback Parkinsonian model," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    9. Li, Haihe & Wang, Pan & Huang, Xiaoyu & Zhang, Zheng & Zhou, Changcong & Yue, Zhufeng, 2021. "Vine copula-based parametric sensitivity analysis of failure probability-based importance measure in the presence of multidimensional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Emanuele Borgonovo, 2006. "Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1349-1361, October.
    11. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Paleari, Livia & Movedi, Ermes & Zoli, Michele & Burato, Andrea & Cecconi, Irene & Errahouly, Jabir & Pecollo, Eleonora & Sorvillo, Carla & Confalonieri, Roberto, 2021. "Sensitivity analysis using Morris: Just screening or an effective ranking method?," Ecological Modelling, Elsevier, vol. 455(C).
    13. Mohammed H. Alharbi & Fawaz K. Alalhareth & Mahmoud A. Ibrahim, 2023. "Analyzing the Dynamics of a Periodic Typhoid Fever Transmission Model with Imperfect Vaccination," Mathematics, MDPI, vol. 11(15), pages 1-26, July.
    14. Liu, Xing & Ferrario, Elisa & Zio, Enrico, 2019. "Identifying resilient-important elements in interdependent critical infrastructures by sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 423-434.
    15. WoongHee Jung & Aikaterini P. Kyprioti & Ehsan Adeli & Alexandros A. Taflanidis, 2023. "Exploring the sensitivity of probabilistic surge estimates to forecast errors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1371-1409, January.
    16. Hanthanan Arachchilage, Kalpana & Hussaini, Mohammed Yousuff, 2021. "Ranking non-pharmaceutical interventions against Covid-19 global pandemic using global sensitivity analysis—Effect on number of deaths," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    17. Mariem Ellouze & Jean‐Pierre Gauchi & Jean‐Christophe Augustin, 2010. "Global Sensitivity Analysis Applied to a Contamination Assessment Model of Listeria monocytogenes in Cold Smoked Salmon at Consumption," Risk Analysis, John Wiley & Sons, vol. 30(5), pages 841-852, May.
    18. Ma, Yuan-Zhuo & Jin, Xiang-Xiang & Zhao, Xiang & Li, Hong-Shuang & Zhao, Zhen-Zhou & Xu, Chang, 2024. "Reliability-oriented global sensitivity analysis using subset simulation and space partition," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    19. Francesco Polese & Carmen Gallucci & Luca Carrubbo & Rosalia Santulli, 2021. "Predictive Maintenance as a Driver for Corporate Sustainability: Evidence from a Public-Private Co-Financed R&D Project," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    20. Matieyendou Lamboni & Moez Sanaa & Fanny Tenenhaus‐Aziza, 2014. "Sensitivity Analysis for Critical Control Points Determination and Uncertainty Analysis to Link FSO and Process Criteria: Application to Listeria monocytogenes in Soft Cheese Made from Pasteurized Mil," Risk Analysis, John Wiley & Sons, vol. 34(4), pages 751-764, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:9:p:4946-:d:549615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.