IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i5p2711-d512626.html
   My bibliography  Save this article

Evaluating the Inequality of Medical Service Accessibility Using Smart Card Data

Author

Listed:
  • Xintao Liu

    (Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
    Smart Cities Research Institute (SCRI), The Hong Kong Polytechnic University, Kowloon, Hong Kong)

  • Ziwei Lin

    (Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong)

  • Jianwei Huang

    (Institute of Space and Earth Information Science, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong)

  • He Gao

    (Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong)

  • Wenzhong Shi

    (Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
    Smart Cities Research Institute (SCRI), The Hong Kong Polytechnic University, Kowloon, Hong Kong)

Abstract

The measurement of medical service accessibility is typically based on driving or Euclidean distance. However, in most non-emergency cases, public transport is the travel mode used by the public to access medical services. Yet, there has been little evaluation of the public transport system-based inequality of medical service accessibility. This work uses massive real smart card data (SCD) and an improved potential model to estimate the public transport-based medical service accessibility in Beijing, China. These real SCD data are used to calculate travel costs in terms of time and distance, and medical service accessibility is estimated using an improved potential model. The spatiotemporal variations and patterns of medical service accessibility are explored, and the results show that it is unevenly spatiotemporally distributed across the study area. For example, medical service accessibility in urban areas is higher than that in suburban areas, accessibility during peak periods is higher than that during off-peak periods, and accessibility on weekends is generally higher than that on weekdays. To explore the association of medical service accessibility with socio-economic factors, the relationship between accessibility and house price is investigated via a spatial econometric analysis. The results show that, at a global level, house price is positively correlated with medical service accessibility. In particular, the medical service accessibility of a higher-priced spatial housing unit is lower than that of its neighboring spatial units, owing to the positive spatial spillover effect of house price. This work sheds new light on the inequality of medical service accessibility from the perspective of public transport, which may benefit urban policymakers and planners.

Suggested Citation

  • Xintao Liu & Ziwei Lin & Jianwei Huang & He Gao & Wenzhong Shi, 2021. "Evaluating the Inequality of Medical Service Accessibility Using Smart Card Data," IJERPH, MDPI, vol. 18(5), pages 1-18, March.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:5:p:2711-:d:512626
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/5/2711/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/5/2711/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Qingquan & Zhang, Tong & Wang, Handong & Zeng, Zhe, 2011. "Dynamic accessibility mapping using floating car data: a network-constrained density estimation approach," Journal of Transport Geography, Elsevier, vol. 19(3), pages 379-393.
    2. Jing Luo & Guangping Chen & Chang Li & Bingyan Xia & Xuan Sun & Siyun Chen, 2018. "Use of an E2SFCA Method to Measure and Analyse Spatial Accessibility to Medical Services for Elderly People in Wuhan, China," IJERPH, MDPI, vol. 15(7), pages 1-17, July.
    3. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    4. Weibull, Jorgen W., 1976. "An axiomatic approach to the measurement of accessibility," Regional Science and Urban Economics, Elsevier, vol. 6(4), pages 357-379, December.
    5. Liu, Yong & Fan, Peilei & Yue, Wenze & Song, Yan, 2018. "Impacts of land finance on urban sprawl in China: The case of Chongqing," Land Use Policy, Elsevier, vol. 72(C), pages 420-432.
    6. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    7. Mavoa, Suzanne & Witten, Karen & McCreanor, Tim & O’Sullivan, David, 2012. "GIS based destination accessibility via public transit and walking in Auckland, New Zealand," Journal of Transport Geography, Elsevier, vol. 20(1), pages 15-22.
    8. J. Paul Elhorst, 2003. "Specification and Estimation of Spatial Panel Data Models," International Regional Science Review, , vol. 26(3), pages 244-268, July.
    9. J. Elhorst, 2010. "Applied Spatial Econometrics: Raising the Bar," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 9-28.
    10. Yingqi Guo & Shu-Sen Chang & Mengni Chen & Paul S. F. Yip, 2018. "Do Poorer Areas Have Poorer Access to Services in Hong Kong? A Small-Area Analysis Based on Multiple Spatial Accessibility Indicators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 138(1), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Liu & Han Gu & Yuyu Shi, 2022. "Spatial Accessibility Analysis of Medical Facilities Based on Public Transportation Networks," IJERPH, MDPI, vol. 19(23), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaikh, Ibrahim A. & O'Brien, Jonathan Paul & Peters, Lois, 2018. "Inside directors and the underinvestment of financial slack towards R&D-intensity in high-technology firms," Journal of Business Research, Elsevier, vol. 82(C), pages 192-201.
    2. Mikel Bedayo & Gabriel Jiménez & José-Luis Peydró & Raquel Vegas, 2020. "Screening and Loan Origination Time: Lending Standards, Loan Defaults and Bank Failures," Working Papers 1215, Barcelona School of Economics.
    3. Ruey-Ching Hwang, 2013. "Forecasting credit ratings with the varying-coefficient model," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1947-1965, December.
    4. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    5. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    6. Suzan Hol, 2006. "The influence of the business cycle on bankruptcy probability," Discussion Papers 466, Statistics Norway, Research Department.
    7. Pavol Durana & Lucia Michalkova & Andrej Privara & Josef Marousek & Milos Tumpach, 2021. "Does the life cycle affect earnings management and bankruptcy?," Oeconomia Copernicana, Institute of Economic Research, vol. 12(2), pages 425-461, June.
    8. Dinh, K. & Kleimeier, S., 2006. "Credit scoring for Vietnam's retail banking market : implementation and implications for transactional versus relationship lending," Research Memorandum 012, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    9. Elizaveta Danilova & Evgeny Rumyantsev & Ivan Shevchuk, 2018. "Review of the Bank of Russia – IMF Workshop 'Recent Developments in Macroprudential Stress Testing'," Russian Journal of Money and Finance, Bank of Russia, vol. 77(4), pages 60-83, December.
    10. Alderson, Michael J. & Betker, Brian L. & Halford, Joseph T., 2021. "Fictitious dividend cuts in the CRSP data," Journal of Corporate Finance, Elsevier, vol. 71(C).
    11. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    12. Nabeel Al-Milli & Amjad Hudaib & Nadim Obeid, 2021. "Population Diversity Control of Genetic Algorithm Using a Novel Injection Method for Bankruptcy Prediction Problem," Mathematics, MDPI, vol. 9(8), pages 1-18, April.
    13. Sandrine Lardic & Claire Gauthier, 2003. "Un modèle multifactoriel des spreads de crédit : estimation sur panels complets et incomplets," Économie et Prévision, Programme National Persée, vol. 159(3), pages 53-69.
    14. Hu, Xiaolu & Shi, Jing & Wang, Lafang & Yu, Jing, 2020. "Foreign ownership in Chinese credit ratings industry: Information revelation or certification?," Journal of Banking & Finance, Elsevier, vol. 118(C).
    15. Lauren Stagnol, 2015. "Designing a corporate bond index on solvency criteria," EconomiX Working Papers 2015-39, University of Paris Nanterre, EconomiX.
    16. Nadiah Amirah Nor Azhari & Suhaily Hasnan & Zuraidah Mohd Sanusi, 2020. "The Relationships Between Managerial Overconfidence, Audit Committee, CEO Duality and Audit Quality and Accounting Misstatements," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 11(3), pages 18-30, June.
    17. Nagar, Neerav & Sen, Kaustav, 2016. "Earnings management in India: Managers’ fixation on operating profits," Journal of International Accounting, Auditing and Taxation, Elsevier, vol. 26(C), pages 1-12.
    18. Lin, Hsiou-Wei William & Lo, Huai-Chun & Wu, Ruei-Shian, 2016. "Modeling default prediction with earnings management," Pacific-Basin Finance Journal, Elsevier, vol. 40(PB), pages 306-322.
    19. Fabio Panetta & Fabiano Schivardi & Matthew Shum, 2009. "Do Mergers Improve Information? Evidence from the Loan Market," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(4), pages 673-709, June.
    20. Jiang, Jie & Hou, Jack & Wang, Cangyu & Liu, HaiYue, 2021. "COVID-19 impact on firm investment—Evidence from Chinese publicly listed firms," Journal of Asian Economics, Elsevier, vol. 75(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:5:p:2711-:d:512626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.