IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i4p1883-d499862.html
   My bibliography  Save this article

Implementing Precision Medicine in Human Frailty through Epigenetic Biomarkers

Author

Listed:
  • José Luis García-Giménez

    (U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain
    Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
    Department of Physiology, Faculty of Medicine, University of Valencia, 46003 Valencia, Spain
    EpiDisease S.L., Parc Cientific de la Universitat de València, 46980 Paterna, Spain)

  • Salvador Mena-Molla

    (Department of Physiology, Faculty of Medicine, University of Valencia, 46003 Valencia, Spain
    EpiDisease S.L., Parc Cientific de la Universitat de València, 46980 Paterna, Spain)

  • Francisco José Tarazona-Santabalbina

    (Servicio de Geriatría, Hospital Universitario de la Ribera, CIBERFES, Alzira, 46010 Valencia, Spain)

  • Jose Viña

    (Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, 46010 Valencia, Spain)

  • Mari Carmen Gomez-Cabrera

    (Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, 46010 Valencia, Spain)

  • Federico V. Pallardó

    (U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain
    Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
    Department of Physiology, Faculty of Medicine, University of Valencia, 46003 Valencia, Spain
    EpiDisease S.L., Parc Cientific de la Universitat de València, 46980 Paterna, Spain)

Abstract

The main epigenetic features in aging are: reduced bulk levels of core histones, altered pattern of histone post-translational modifications, changes in the pattern of DNA methylation, replacement of canonical histones with histone variants, and altered expression of non-coding RNA. The identification of epigenetic mechanisms may contribute to the early detection of age-associated subclinical changes or deficits at the molecular and/or cellular level, to predict the development of frailty, or even more interestingly, to improve health trajectories in older adults. Frailty reflects a state of increased vulnerability to stressors as a result of decreased physiologic reserves, and even dysregulation of multiple physiologic systems leading to adverse health outcomes for individuals of the same chronological age. A key approach to overcome the challenges of frailty is the development of biomarkers to improve early diagnostic accuracy and to predict trajectories in older individuals. The identification of epigenetic biomarkers of frailty could provide important support for the clinical diagnosis of frailty, or more specifically, to the evaluation of its associated risks. Interventional studies aimed at delaying the onset of frailty and the functional alterations associated with it, would also undoubtedly benefit from the identification of frailty biomarkers. Specific to the article yet reasonably common within the subject discipline.

Suggested Citation

  • José Luis García-Giménez & Salvador Mena-Molla & Francisco José Tarazona-Santabalbina & Jose Viña & Mari Carmen Gomez-Cabrera & Federico V. Pallardó, 2021. "Implementing Precision Medicine in Human Frailty through Epigenetic Biomarkers," IJERPH, MDPI, vol. 18(4), pages 1-17, February.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:4:p:1883-:d:499862
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/4/1883/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/4/1883/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pedro Sousa-Victor & Susana Gutarra & Laura García-Prat & Javier Rodriguez-Ubreva & Laura Ortet & Vanessa Ruiz-Bonilla & Mercè Jardí & Esteban Ballestar & Susana González & Antonio L. Serrano & Eusebi, 2014. "Geriatric muscle stem cells switch reversible quiescence into senescence," Nature, Nature, vol. 506(7488), pages 316-321, February.
    2. Jan M. van Deursen, 2014. "The role of senescent cells in ageing," Nature, Nature, vol. 509(7501), pages 439-446, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco José Tarazona-Santabalbina & Sebastià Josep Santaeugènia Gonzàlez & José Augusto García Navarro & Jose Viña, 2021. "Healthcare for Older Adults, Where Are We Moving towards?," IJERPH, MDPI, vol. 18(12), pages 1-3, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ines Sturmlechner & Chance C. Sine & Karthik B. Jeganathan & Cheng Zhang & Raul O. Fierro Velasco & Darren J. Baker & Hu Li & Jan M. Deursen, 2022. "Senescent cells limit p53 activity via multiple mechanisms to remain viable," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Leighton H. Daigh & Debarya Saha & David L. Rosenthal & Katherine R. Ferrick & Tobias Meyer, 2024. "Uncoupling of mTORC1 from E2F activity maintains DNA damage and senescence," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. He Cao & Panpan Yang & Jia Liu & Yan Shao & Honghao Li & Pinglin Lai & Hong Wang & Anling Liu & Bin Guo & Yujin Tang & Xiaochun Bai & Kai Li, 2023. "MYL3 protects chondrocytes from senescence by inhibiting clathrin-mediated endocytosis and activating of Notch signaling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Moore, Patrick V. & Bennett, Kathleen & Normand, Charles, 2017. "Counting the time lived, the time left or illness? Age, proximity to death, morbidity and prescribing expenditures," Social Science & Medicine, Elsevier, vol. 184(C), pages 1-14.
    5. Konstantin Avchaciov & Marina P. Antoch & Ekaterina L. Andrianova & Andrei E. Tarkhov & Leonid I. Menshikov & Olga Burmistrova & Andrei V. Gudkov & Peter O. Fedichev, 2022. "Unsupervised learning of aging principles from longitudinal data," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Kaushik Bhattacharya & Samarpan Maiti & Szabolcs Zahoran & Lorenz Weidenauer & Dina Hany & Diana Wider & Lilia Bernasconi & Manfredo Quadroni & Martine Collart & Didier Picard, 2022. "Translational reprogramming in response to accumulating stressors ensures critical threshold levels of Hsp90 for mammalian life," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Xu Zhang & Vesselina M. Pearsall & Chase M. Carver & Elizabeth J. Atkinson & Benjamin D. S. Clarkson & Ethan M. Grund & Michelle Baez-Faria & Kevin D. Pavelko & Jennifer M. Kachergus & Thomas A. White, 2022. "Rejuvenation of the aged brain immune cell landscape in mice through p16-positive senescent cell clearance," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    8. Sara Rojas-Vázquez & Beatriz Lozano-Torres & Alba García-Fernández & Irene Galiana & Ana Perez-Villalba & Pablo Martí-Rodrigo & M. José Palop & Marcia Domínguez & Mar Orzáez & Félix Sancenón & Juan F., 2024. "A renal clearable fluorogenic probe for in vivo β-galactosidase activity detection during aging and senolysis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Jina Yun & Simon Hansen & Otto Morris & David T. Madden & Clare Peters Libeu & Arjun J. Kumar & Cameron Wehrfritz & Aaron H. Nile & Yingnan Zhang & Lijuan Zhou & Yuxin Liang & Zora Modrusan & Michelle, 2023. "Senescent cells perturb intestinal stem cell differentiation through Ptk7 induced noncanonical Wnt and YAP signaling," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Gaocai Li & Liang Ma & Shujie He & Rongjin Luo & Bingjin Wang & Weifeng Zhang & Yu Song & Zhiwei Liao & Wencan Ke & Qian Xiang & Xiaobo Feng & Xinghuo Wu & Yukun Zhang & Kun Wang & Cao Yang, 2022. "WTAP-mediated m6A modification of lncRNA NORAD promotes intervertebral disc degeneration," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:4:p:1883-:d:499862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.