IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i4p1610-d495748.html
   My bibliography  Save this article

A Novel IoT Based Positioning and Shadowing System for Dementia Training

Author

Listed:
  • Lun-Ping Hung

    (Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei 111219, Taiwan)

  • Weidong Huang

    (TD School, University of Technology Sydney, 2007 Ultimo, Australia)

  • Jhih-Yu Shih

    (Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei 111219, Taiwan)

  • Chien-Liang Liu

    (Dementia Center, Taipei City Hospital, Taipei 10065, Taiwan)

Abstract

A rapid increase in the number of patients with dementia, particularly memory decline or impairment, has led to the loss of self-care ability in more individuals and increases in medical and social costs. Numerous studies, and clinical service experience, have revealed that the intervention of nonpharmacological management for people with dementia is effective in delaying the degeneration caused by dementia. Due to recent rapid developments in information and communications technology, many innovative research and development and cross-domain applications have been effectively used in the dementia care environment. This study proposed a new short-term memory support and cognitive training application technology, a “positioning and shadowing system,” to delay short-term memory degeneration in dementia. Training courses that integrate physical and digital technologies for the indoor location of patients with dementia were constructed using technologies such as Bluetooth Low Energy, fingerprint location algorithm, and short-range wireless communication. The Internet of Things was effectively applied to a clinical training environment for short-term memory. A pilot test verified that the results demonstrated learning effects in cognitive training and that the system can assist medical personnel in training and nursing work. Participants responded with favorable feedback regarding course satisfaction and system usability. This study can be used as a reference for future digital smart cognitive training that allows observation of the performance of patients with dementia in activities of daily living.

Suggested Citation

  • Lun-Ping Hung & Weidong Huang & Jhih-Yu Shih & Chien-Liang Liu, 2021. "A Novel IoT Based Positioning and Shadowing System for Dementia Training," IJERPH, MDPI, vol. 18(4), pages 1-21, February.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:4:p:1610-:d:495748
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/4/1610/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/4/1610/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo-Feng Fan & Yan-Hui Guo & Jia-Mei Zheng & Wei-Chiang Hong, 2019. "Application of the Weighted K-Nearest Neighbor Algorithm for Short-Term Load Forecasting," Energies, MDPI, vol. 12(5), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sholeh Hadi Pramono & Mahdin Rohmatillah & Eka Maulana & Rini Nur Hasanah & Fakhriy Hario, 2019. "Deep Learning-Based Short-Term Load Forecasting for Supporting Demand Response Program in Hybrid Energy System," Energies, MDPI, vol. 12(17), pages 1-16, August.
    2. Feng, Yanxiao & Duan, Qiuhua & Chen, Xi & Yakkali, Sai Santosh & Wang, Julian, 2021. "Space cooling energy usage prediction based on utility data for residential buildings using machine learning methods," Applied Energy, Elsevier, vol. 291(C).
    3. Ng, Rong Wang & Begam, Kasim Mumtaj & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2021. "An improved self-organizing incremental neural network model for short-term time-series load prediction," Applied Energy, Elsevier, vol. 292(C).
    4. Juan Carlos Bravo-Rodríguez & Francisco J. Torres & María D. Borrás, 2020. "Hybrid Machine Learning Models for Classifying Power Quality Disturbances: A Comparative Study," Energies, MDPI, vol. 13(11), pages 1-20, June.
    5. Haicheng Ling & Pierre-Yves Massé & Thibault Rihet & Frédéric Wurtz, 2023. "Realistic Nudging through ICT Pipelines to Help Improve Energy Self-Consumption for Management in Energy Communities," Energies, MDPI, vol. 16(13), pages 1-24, July.
    6. Gibson Kimutai & Alexander Ngenzi & Rutabayiro Ngoga Said & Ambrose Kiprop & Anna Förster, 2020. "An Optimum Tea Fermentation Detection Model Based on Deep Convolutional Neural Networks," Data, MDPI, vol. 5(2), pages 1-26, April.
    7. Vincent Le & Joshua Ramirez & Miltiadis Alamaniotis, 2021. "Intelligent Room-Based Identification of Electricity Consumption with an Ensemble Learning Method in Smart Energy," Energies, MDPI, vol. 14(20), pages 1-13, October.
    8. Fatma Yaprakdal, 2022. "An Ensemble Deep-Learning-Based Model for Hour-Ahead Load Forecasting with a Feature Selection Approach: A Comparative Study with State-of-the-Art Methods," Energies, MDPI, vol. 16(1), pages 1-13, December.
    9. Hongli Liu & Luoqi Wang & Ji Li & Lei Shao & Delong Zhang, 2023. "Research on Smart Power Sales Strategy Considering Load Forecasting and Optimal Allocation of Energy Storage System in China," Energies, MDPI, vol. 16(8), pages 1-18, April.
    10. Umar Javed & Khalid Ijaz & Muhammad Jawad & Ejaz A. Ansari & Noman Shabbir & Lauri Kütt & Oleksandr Husev, 2021. "Exploratory Data Analysis Based Short-Term Electrical Load Forecasting: A Comprehensive Analysis," Energies, MDPI, vol. 14(17), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:4:p:1610-:d:495748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.