IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i24p13050-d699676.html
   My bibliography  Save this article

Towards a Generic Residential Building Model for Heat–Health Warning Systems

Author

Listed:
  • Jens Pfafferott

    (Institute of Sustainable Energy Systems, Offenburg University of Applied Sciences, 77652 Offenburg, Germany)

  • Sascha Rißmann

    (Institute of Sustainable Energy Systems, Offenburg University of Applied Sciences, 77652 Offenburg, Germany)

  • Guido Halbig

    (Deutscher Wetterdienst, 45133 Essen, Germany)

  • Franz Schröder

    (Metrona Union GmbH, 81379 Munich, Germany)

  • Sascha Saad

    (agl Hartz Saad Wendl Landschafts-, Stadt- und Raumplanung, 66111 Saarbrücken, Germany)

Abstract

A strong heat load in buildings and cities during the summer is not a new phenomenon. However, prolonged heat waves and increasing urbanization are intensifying the heat island effect in our cities; hence, the heat exposure in residential buildings. The thermophysiological load in the interior and exterior environments can be reduced in the medium and long term, through urban planning and building physics measures. In the short term, an increasingly vulnerable population must be effectively informed of an impending heat wave. Building simulation models can be favorably used to evaluate indoor heat stress. This study presents a generic simulation model, developed from monitoring data in urban multi-unit residential buildings during a summer period and using statistical methods. The model determines both the average room temperature and its deviations and, thus, consists of three sub-models: cool, average, and warm building types. The simulation model is based on the same mathematical algorithm, whereas each building type is described by a specific data set, concerning its building physical parameters and user behavior, respectively. The generic building model may be used in urban climate analyses with many individual buildings distributed across the city or in heat–health warning systems, with different building and user types distributed across a region. An urban climate analysis (with weather data from a database) may evaluate local differences in urban and indoor climate, whereas heat–health warning systems (driven by a weather forecast) obtain additional information on indoor heat stress and its expected deviations.

Suggested Citation

  • Jens Pfafferott & Sascha Rißmann & Guido Halbig & Franz Schröder & Sascha Saad, 2021. "Towards a Generic Residential Building Model for Heat–Health Warning Systems," IJERPH, MDPI, vol. 18(24), pages 1-26, December.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:24:p:13050-:d:699676
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/24/13050/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/24/13050/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peeters, Leen & Dear, Richard de & Hensen, Jan & D'haeseleer, William, 2009. "Thermal comfort in residential buildings: Comfort values and scales for building energy simulation," Applied Energy, Elsevier, vol. 86(5), pages 772-780, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ascione, Fabrizio & Bellia, Laura & Capozzoli, Alfonso, 2013. "A coupled numerical approach on museum air conditioning: Energy and fluid-dynamic analysis," Applied Energy, Elsevier, vol. 103(C), pages 416-427.
    2. Pisello, Anna Laura & Goretti, Michele & Cotana, Franco, 2012. "A method for assessing buildings’ energy efficiency by dynamic simulation and experimental activity," Applied Energy, Elsevier, vol. 97(C), pages 419-429.
    3. Taleghani, Mohammad & Tenpierik, Martin & Kurvers, Stanley & van den Dobbelsteen, Andy, 2013. "A review into thermal comfort in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 201-215.
    4. Patteeuw, Dieter & Reynders, Glenn & Bruninx, Kenneth & Protopapadaki, Christina & Delarue, Erik & D’haeseleer, William & Saelens, Dirk & Helsen, Lieve, 2015. "CO2-abatement cost of residential heat pumps with active demand response: demand- and supply-side effects," Applied Energy, Elsevier, vol. 156(C), pages 490-501.
    5. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    6. Wang, Zhe & Hong, Tianzhen, 2020. "Learning occupants’ indoor comfort temperature through a Bayesian inference approach for office buildings in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Wang, Zhu & Wang, Lingfeng & Dounis, Anastasios I. & Yang, Rui, 2012. "Multi-agent control system with information fusion based comfort model for smart buildings," Applied Energy, Elsevier, vol. 99(C), pages 247-254.
    8. Rama Curiel, José Adrián & Thakur, Jagruti, 2022. "A novel approach for Direct Load Control of residential air conditioners for Demand Side Management in developing regions," Energy, Elsevier, vol. 258(C).
    9. Xu, Xiaoqi & Culligan, Patricia J. & Taylor, John E., 2014. "Energy Saving Alignment Strategy: Achieving energy efficiency in urban buildings by matching occupant temperature preferences with a building’s indoor thermal environment," Applied Energy, Elsevier, vol. 123(C), pages 209-219.
    10. Karol Bandurski & Andrzej Górka & Halina Koczyk, 2023. "Radiators Adjustment in Multi-Family Residential Buildings—An Analysis Based on Data from Heat Meters," Energies, MDPI, vol. 16(22), pages 1-22, November.
    11. Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
    12. Jin Wei & Fangsi Yu & Haixiu Liang & Maohui Luo, 2020. "Thermal Performance of Vertical Courtyard System in Office Buildings Under Typical Hot Days in Hot-Humid Climate Area: A Case Study," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    13. Pukšec, Tomislav & Vad Mathiesen, Brian & Duić, Neven, 2013. "Potentials for energy savings and long term energy demand of Croatian households sector," Applied Energy, Elsevier, vol. 101(C), pages 15-25.
    14. Mohammadi, Zahra & Hoes, Pieter Jan & Hensen, Jan L.M., 2020. "Simulation-based design optimization of houses with low grid dependency," Renewable Energy, Elsevier, vol. 157(C), pages 1185-1202.
    15. Arteconi, Alessia & Patteeuw, Dieter & Bruninx, Kenneth & Delarue, Erik & D’haeseleer, William & Helsen, Lieve, 2016. "Active demand response with electric heating systems: Impact of market penetration," Applied Energy, Elsevier, vol. 177(C), pages 636-648.
    16. Timothy O. Adekunle, 2021. "Indoor Comfort, Thermal Indices, and Energy Assessment of Multi-Family Colonial Revival Style Buildings," Energies, MDPI, vol. 14(22), pages 1-18, November.
    17. Filippín, C. & Flores Larsen, S., 2012. "Summer thermal behaviour of compact single family housing in a temperate climate in Argentina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3439-3455.
    18. Roberto Robledo-Fava & Mónica C. Hernández-Luna & Pedro Fernández-de-Córdoba & Humberto Michinel & Sonia Zaragoza & A Castillo-Guzman & Romeo Selvas-Aguilar, 2019. "Analysis of the Influence Subjective Human Parameters in the Calculation of Thermal Comfort and Energy Consumption of Buildings," Energies, MDPI, vol. 12(8), pages 1-23, April.
    19. Alimohammadisagvand, Behrang & Jokisalo, Juha & Kilpeläinen, Simo & Ali, Mubbashir & Sirén, Kai, 2016. "Cost-optimal thermal energy storage system for a residential building with heat pump heating and demand response control," Applied Energy, Elsevier, vol. 174(C), pages 275-287.
    20. Olofsson, Thomas & Mahlia, T.M.I., 2012. "Modeling and simulation of the energy use in an occupied residential building in cold climate," Applied Energy, Elsevier, vol. 91(1), pages 432-438.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:24:p:13050-:d:699676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.