IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i19p10366-d648492.html
   My bibliography  Save this article

Biomonitoring of Mercury Contamination in Poland Based on Its Concentration in Scots Pine ( Pinus sylvestris L.) Foliage

Author

Listed:
  • Bartłomiej Woś

    (Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, al. 29 Listopada 46, 31-425 Krakow, Poland)

  • Piotr Gruba

    (Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, al. 29 Listopada 46, 31-425 Krakow, Poland)

  • Jarosław Socha

    (Department of Forest Resources Management, Faculty of Forestry, University of Agriculture in Krakow, al. 29 Listopada 46, 31-425 Krakow, Poland)

  • Marcin Pietrzykowski

    (Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, al. 29 Listopada 46, 31-425 Krakow, Poland)

Abstract

This work evaluates current mercury (Hg) contamination in Poland, represented by the Hg concentrations in Scots pine foliage. Samples were collected over 295 investigation plots in monitoring grids throughout Poland, from pines aged between 12 and 147 years. Analyses were conducted with consideration of bioclimatic factors and soil properties. Concentrations in the pine foliage did not exceed the values characteristic of an ecosystem unaffected by industrial pollution, ranging from 0.0032 to 0.0252 mg kg −1 dry mass. However, pine stands located in western and central Poland, and in the northwest near the Baltic Sea, exhibited higher Hg concentrations in foliage than in eastern regions. Hg content in foliage depends on the mean temperature of the driest quarter, as well as on Hg content in soils. This indicates that the periods of drought observed in recent years in Poland may affect Hg concentrations in pine foliage.

Suggested Citation

  • Bartłomiej Woś & Piotr Gruba & Jarosław Socha & Marcin Pietrzykowski, 2021. "Biomonitoring of Mercury Contamination in Poland Based on Its Concentration in Scots Pine ( Pinus sylvestris L.) Foliage," IJERPH, MDPI, vol. 18(19), pages 1-12, October.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:19:p:10366-:d:648492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/19/10366/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/19/10366/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Henrik Selin, 2014. "Global Environmental Law and Treaty-Making on Hazardous Substances: The Minamata Convention and Mercury Abatement," Global Environmental Politics, MIT Press, vol. 14(1), pages 1-19, February.
    2. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nishijima, Daisuke, 2017. "The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan," Energy Policy, Elsevier, vol. 104(C), pages 340-347.
    2. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    3. Dereje S. Ayou & Valerie Eveloy, 2020. "Integration of Municipal Air-Conditioning, Power, and Gas Supplies Using an LNG Cold Exergy-Assisted Kalina Cycle System," Energies, MDPI, vol. 13(18), pages 1-31, September.
    4. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    5. François Cohen & Matthieu Glachant & Magnus Söderberg, 2017. "The cost of adapting to climate change: evidence from the US residential sector," Working Papers hal-01695171, HAL.
    6. Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
    7. Hartin, Corinne & Link, Robert & Patel, Pralit & Mundra, Anupriya & Horowitz, Russell & Dorheim, Kalyn & Clarke, Leon, 2021. "Integrated modeling of human-earth system interactions: An application of GCAM-fusion," Energy Economics, Elsevier, vol. 103(C).
    8. Wang, Manyu & Wei, Chu, 2024. "Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China," Energy Policy, Elsevier, vol. 190(C).
    9. Speerforck, Arne & Schmitz, Gerhard, 2016. "Experimental investigation of a ground-coupled desiccant assisted air conditioning system," Applied Energy, Elsevier, vol. 181(C), pages 575-585.
    10. Susanne A. Benz & Kathrin Menberg & Peter Bayer & Barret L. Kurylyk, 2022. "Shallow subsurface heat recycling is a sustainable global space heating alternative," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Vincenzo Bianco & Annalisa Marchitto & Federico Scarpa & Luca A. Tagliafico, 2020. "Forecasting Energy Consumption in the EU Residential Sector," IJERPH, MDPI, vol. 17(7), pages 1-15, March.
    12. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    13. Cansino, José M. & Pablo-Romero, María del P. & Román, Rocío & Yñiguez, Rocío, 2011. "Promoting renewable energy sources for heating and cooling in EU-27 countries," Energy Policy, Elsevier, vol. 39(6), pages 3803-3812, June.
    14. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    15. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Jakubcionis, Mindaugas & Carlsson, Johan, 2018. "Estimation of European Union service sector space cooling potential," Energy Policy, Elsevier, vol. 113(C), pages 223-231.
    17. Bessa, Vanessa M.T. & Prado, Racine T.A., 2015. "Reduction of carbon dioxide emissions by solar water heating systems and passive technologies in social housing," Energy Policy, Elsevier, vol. 83(C), pages 138-150.
    18. Alessio Mastrucci & Edward Byers & Shonali Pachauri & Narasimha Rao & Bas Ruijven, 2022. "Cooling access and energy requirements for adaptation to heat stress in megacities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-16, December.
    19. Monika Wieczorek-Kosmala, 2020. "Weather Risk Management in Energy Sector: The Polish Case," Energies, MDPI, vol. 13(4), pages 1-21, February.
    20. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:19:p:10366-:d:648492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.