IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i18p9905-d639607.html
   My bibliography  Save this article

Effects of Air Pollutants on Airway Diseases

Author

Listed:
  • Yun-Gi Lee

    (Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon 14584, Gyeonggi-do, Korea)

  • Pureun-Haneul Lee

    (Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon 14584, Gyeonggi-do, Korea)

  • Seon-Muk Choi

    (Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon 14584, Gyeonggi-do, Korea)

  • Min-Hyeok An

    (Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon 14584, Gyeonggi-do, Korea)

  • An-Soo Jang

    (Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170 Jomaru-ro, Wonmi-gu, Bucheon 14584, Gyeonggi-do, Korea)

Abstract

Air pollutants include toxic particles and gases emitted in large quantities from many different combustible materials. They also include particulate matter (PM) and ozone, and biological contaminants, such as viruses and bacteria, which can penetrate the human airway and reach the bloodstream, triggering airway inflammation, dysfunction, and fibrosis. Pollutants that accumulate in the lungs exacerbate symptoms of respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD). Asthma, a heterogeneous disease with complex pathological mechanisms, is characterized by particular symptoms such as shortness of breath, a tight chest, coughing, and wheezing. Patients with COPD often experience exacerbations and worsening of symptoms, which may result in hospitalization and disease progression. PM varies in terms of composition, and can include solid and liquid particles of various sizes. PM concentrations are higher in urban areas. Ozone is one of the most toxic photochemical air pollutants. In general, air pollution decreases quality of life and life expectancy. It exacerbates acute and chronic respiratory symptoms in patients with chronic airway diseases, and increases the morbidity and risk of hospitalization associated with respiratory diseases. However, the mechanisms underlying these effects remain unclear. Therefore, we reviewed the impact of air pollutants on airway diseases such as asthma and COPD, focusing on their underlying mechanisms.

Suggested Citation

  • Yun-Gi Lee & Pureun-Haneul Lee & Seon-Muk Choi & Min-Hyeok An & An-Soo Jang, 2021. "Effects of Air Pollutants on Airway Diseases," IJERPH, MDPI, vol. 18(18), pages 1-17, September.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9905-:d:639607
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/18/9905/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/18/9905/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emanuel Alcala & Paul Brown & John A. Capitman & Mariaelena Gonzalez & Ricardo Cisneros, 2019. "Cumulative Impact of Environmental Pollution and Population Vulnerability on Pediatric Asthma Hospitalizations: A Multilevel Analysis of CalEnviroScreen," IJERPH, MDPI, vol. 16(15), pages 1-12, July.
    2. N. Künzli & R. Kaiser & S. Medina & M. Studnicka & O. Chanel & P. Filliger & M. Herry & F. Horak & V. Puybonnieux-Texier & Philippe Quénel & Jodi Schneider & R. Seethaler & Jean-Christophe Vergnaud & , 2000. "Public health Impact of Outdoor and Traffic related Air Pollution," Post-Print halshs-00150955, HAL.
    3. Małgorzata Kowalska & Michał Skrzypek & Michał Kowalski & Josef Cyrys, 2020. "Effect of NO x and NO 2 Concentration Increase in Ambient Air to Daily Bronchitis and Asthma Exacerbation, Silesian Voivodeship in Poland," IJERPH, MDPI, vol. 17(3), pages 1-9, January.
    4. Angelica I. Tiotiu & Plamena Novakova & Denislava Nedeva & Herberto Jose Chong-Neto & Silviya Novakova & Paschalis Steiropoulos & Krzysztof Kowal, 2020. "Impact of Air Pollution on Asthma Outcomes," IJERPH, MDPI, vol. 17(17), pages 1-29, August.
    5. P. Filliger & M. Herry & F. Horak & V. Puybonnieux-Texier & P. Quenel & J. Schneider & R.K. Seethaler & J.C. Vernaud & H. Sommer & N. Künzli & R. Kaiser & S. Medina & M. Studnicka & Olivier Chanel, 2000. "Public-health impact of outdoor and traffic-related air pollution: a European assessment," Post-Print hal-01462907, HAL.
    6. Juha Baek & Bita A. Kash & Xiaohui Xu & Mark Benden & Jon Roberts & Genny Carrillo, 2020. "Association between Ambient Air Pollution and Hospital Length of Stay among Children with Asthma in South Texas," IJERPH, MDPI, vol. 17(11), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maura R. Ribeiro & Marcos V. M. Lima & Roberto C. Ilacqua & Eriane J. L. Savoia & Rogerio Alvarenga & Amy Y. Vittor & Rodrigo D. Raimundo & Gabriel Z. Laporta, 2024. "Amazon Wildfires and Respiratory Health: Impacts during the Forest Fire Season from 2009 to 2019," IJERPH, MDPI, vol. 21(6), pages 1-15, May.
    2. Nurlan Temirbekov & Marzhan Temirbekova & Dinara Tamabay & Syrym Kasenov & Seilkhan Askarov & Zulfiya Tukenova, 2023. "Assessment of the Negative Impact of Urban Air Pollution on Population Health Using Machine Learning Method," IJERPH, MDPI, vol. 20(18), pages 1-15, September.
    3. Peter S. Larson & Leon Espira & Bailey E. Glenn & Miles C. Larson & Christopher S. Crowe & Seoyeon Jang & Marie S. O’Neill, 2022. "Long-Term PM 2.5 Exposure Is Associated with Symptoms of Acute Respiratory Infections among Children under Five Years of Age in Kenya, 2014," IJERPH, MDPI, vol. 19(5), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angelica I. Tiotiu & Plamena Novakova & Denislava Nedeva & Herberto Jose Chong-Neto & Silviya Novakova & Paschalis Steiropoulos & Krzysztof Kowal, 2020. "Impact of Air Pollution on Asthma Outcomes," IJERPH, MDPI, vol. 17(17), pages 1-29, August.
    2. Meelan Thondoo & David Rojas-Rueda & Joyeeta Gupta & Daniel H. de Vries & Mark J. Nieuwenhuijsen, 2019. "Systematic Literature Review of Health Impact Assessments in Low and Middle-Income Countries," IJERPH, MDPI, vol. 16(11), pages 1-21, June.
    3. Gössling, Stefan, 2016. "Urban transport justice," Journal of Transport Geography, Elsevier, vol. 54(C), pages 1-9.
    4. Shreosi Sanyal & Thierry Rochereau & Cara Nichole Maesano & Laure Com-Ruelle & Isabella Annesi-Maesano, 2018. "Long-Term Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study for Metropolitan France," IJERPH, MDPI, vol. 15(11), pages 1-8, November.
    5. McHenry, Mark, 2009. "Policy options when giving negative externalities market value: Clean energy policymaking and restructuring the Western Australian energy sector," Energy Policy, Elsevier, vol. 37(4), pages 1423-1431, April.
    6. Nam, Kyung-Min & Selin, Noelle E. & Reilly, John M. & Paltsev, Sergey, 2010. "Measuring welfare loss caused by air pollution in Europe: A CGE analysis," Energy Policy, Elsevier, vol. 38(9), pages 5059-5071, September.
    7. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    8. Poudenx, Pascal, 2008. "The effect of transportation policies on energy consumption and greenhouse gas emission from urban passenger transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(6), pages 901-909, July.
    9. Lars Hein & Pete Roberts & Lucia Gonzalez, 2016. "Valuing a Statistical Life Year in Relation to Clean Air," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-24, December.
    10. Yeran Sun & Amin Mobasheri, 2017. "Utilizing Crowdsourced Data for Studies of Cycling and Air Pollution Exposure: A Case Study Using Strava Data," IJERPH, MDPI, vol. 14(3), pages 1-19, March.
    11. Miguel Ángel Mendoza-González & Alberto Mejía-Reyes & Luis Quintana-Romero, 2017. "Deseconomías de aglomeración, contaminación y sus efectos en la salud de la Zona Metropolitana del Valle de México. Un análisis con econometría espacial," Economic Analysis Working Papers (2002-2010). Atlantic Review of Economics (2011-2016), Colexio de Economistas de A Coruña, Spain and Fundación Una Galicia Moderna, vol. 1, pages 1-1, December.
    12. Gong, Jie & Lu, Yi & Xie, Huihua, 2020. "The average and distributional effects of teenage adversity on long-term health," Journal of Health Economics, Elsevier, vol. 71(C).
    13. Vivek Shandas & Jackson Voelkel & Meenakshi Rao & Linda George, 2016. "Integrating High-Resolution Datasets to Target Mitigation Efforts for Improving Air Quality and Public Health in Urban Neighborhoods," IJERPH, MDPI, vol. 13(8), pages 1-16, August.
    14. Lin-Yu Xu & Hao Yin & Xiao-Dong Xie, 2014. "Health Risk Assessment of Inhalable Particulate Matter in Beijing Based on the Thermal Environment," IJERPH, MDPI, vol. 11(12), pages 1-21, November.
    15. Samakovlis, Eva & Huhtala, Anni & Bellander, Tom & Svartengren, Magnus, 2005. "Valuing health effects of air pollution--Focus on concentration-response functions," Journal of Urban Economics, Elsevier, vol. 58(2), pages 230-249, September.
    16. Joanna Hałacz & Aldona Skotnicka-Siepsiak & Maciej Neugebauer, 2020. "Assessment of Reducing Pollutant Emissions in Selected Heating and Ventilation Systems in Single-Family Houses," Energies, MDPI, vol. 13(5), pages 1-19, March.
    17. Ami, Dominique & Aprahamian, Frédéric & Chanel, Olivier & Joulé, Robert-Vincent & Luchini, Stéphane, 2014. "Willingness to pay of committed citizens: A field experiment," Ecological Economics, Elsevier, vol. 105(C), pages 31-39.
    18. Acheampong, Michael & Ertem, Funda Cansu & Kappler, Benjamin & Neubauer, Peter, 2017. "In pursuit of Sustainable Development Goal (SDG) number 7: Will biofuels be reliable?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 927-937.
    19. Pock, Markus, 2007. "Gasoline and Diesel Demand in Europe: New Insights," Economics Series 202, Institute for Advanced Studies.
    20. Omidvarborna, Hamid & Kumar, Ashok & Kim, Dong-Shik, 2015. "Recent studies on soot modeling for diesel combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 635-647.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9905-:d:639607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.