IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i13p6785-d581286.html
   My bibliography  Save this article

Difference Analysis of Ecological Vulnerability and Zoning Changes of National Energy and Chemical Bases Using FAHP Method

Author

Listed:
  • Yue Zhang

    (School of Architecture, Chang’an University, Xi’an 710064, China
    Shaanxi Provincial Academy of Environmental Science, Xi’an 710049, China)

  • Yue Chang

    (School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 712000, China)

  • Kanhua Yu

    (School of Architecture, Chang’an University, Xi’an 710064, China)

  • Liyuan Zhang

    (School of Water and Environment, Chang’an University, Xi’an 710064, China)

  • Xuxiang Li

    (School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 712000, China)

Abstract

Ecological vulnerability zoning research is an important basis for taking targeted regional ecological environment restoration and governance measures. This study analyzes the ecological vulnerability pattern and trend in the National Energy and Chemical Base (NECB) in the typical region of the Loess Plateau using GIS (Geographic Information System) data and the fuzzy analytic hierarchy process (FAHP) approach. Based on the human activity–natural environment factor index system, 13 factors representing human activities, socioeconomics, meteorology, soil and topography are selected to build an ecological vulnerability index (EVI) system in the NECB region, which aims at identifying the regional features of eco-environment and major environmental problems in the Loess Plateau. By calculating ecological vulnerability zoning, a model of ecological vulnerability trend change is constructed to quantitatively study the overall temporal and spatial variation of ecological vulnerability. The results indicate that the medium and heavy levels of ecological vulnerability index were mostly distributed in the areas with developed energy and chemical industries, and the slight and light levels were distributed in the southern area and developed agricultural regions. A comprehensive ecological vulnerability index had a score of 2.3207 in 2015 and 2.441 in 2000, indicating that the ecological security gradually improved. Nevertheless, highly intense human activities accelerated the degradation of regional eco-environment in recent years.

Suggested Citation

  • Yue Zhang & Yue Chang & Kanhua Yu & Liyuan Zhang & Xuxiang Li, 2021. "Difference Analysis of Ecological Vulnerability and Zoning Changes of National Energy and Chemical Bases Using FAHP Method," IJERPH, MDPI, vol. 18(13), pages 1-14, June.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:6785-:d:581286
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/13/6785/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/13/6785/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kang Hou & Xuxiang Li & Jing Zhang, 2015. "GIS Analysis of Changes in Ecological Vulnerability Using a SPCA Model in the Loess Plateau of Northern Shaanxi, China," IJERPH, MDPI, vol. 12(4), pages 1-14, April.
    2. Li, Lu & Shi, Zhi-Hua & Yin, Wei & Zhu, Dun & Ng, Sai Leung & Cai, Chong-Fa & Lei, A-Lin, 2009. "A fuzzy analytic hierarchy process (FAHP) approach to eco-environmental vulnerability assessment for the danjiangkou reservoir area, China," Ecological Modelling, Elsevier, vol. 220(23), pages 3439-3447.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunsheng Wu & Gaohuan Liu & Chong Huang & Qingsheng Liu & Xudong Guan, 2018. "Ecological Vulnerability Assessment Based on Fuzzy Analytical Method and Analytic Hierarchy Process in Yellow River Delta," IJERPH, MDPI, vol. 15(5), pages 1-14, April.
    2. Guifang Yang & Zhenghong Chen, 2015. "RS-based fuzzy multiattribute assessment of eco-environmental vulnerability in the source area of the Lishui River of northwest Hunan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1145-1161, September.
    3. Mohsen Mostafa & Nishtman Hatami & Kambiz Espahbodi & Farhad Asadi, 2022. "Fuzzy Analytic Hierarchy Process (FAHP) applied to evaluating the forest management approaches," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 68(7), pages 263-276.
    4. Xian’En Wang & Wei Zhan & Shuo Wang, 2020. "Uncertain Water Environment Carrying Capacity Simulation Based on the Monte Carlo Method–System Dynamics Model: A Case Study of Fushun City," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
    5. Qing Gu & Ke Wang & Jiadan Li & Ligang Ma & Jinsong Deng & Kefeng Zheng & Xiaobin Zhang & Li Sheng, 2015. "Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs," IJERPH, MDPI, vol. 12(10), pages 1-16, October.
    6. Hanlong Gu & Chongyang Huan & Fengjiao Yang, 2023. "Spatiotemporal Dynamics of Ecological Vulnerability and Its Influencing Factors in Shenyang City of China: Based on SRP Model," IJERPH, MDPI, vol. 20(2), pages 1-26, January.
    7. Dong Li & Chongyang Huan & Jun Yang & Hanlong Gu, 2022. "Temporal and Spatial Distribution Changes, Driving Force Analysis and Simulation Prediction of Ecological Vulnerability in Liaoning Province, China," Land, MDPI, vol. 11(7), pages 1-25, July.
    8. Raj, Alok & Sharma, Laxmi Kant, 2023. "Spatial E-PSR modelling for ecological sensitivity assessment for arid rangeland resilience and management," Ecological Modelling, Elsevier, vol. 478(C).
    9. Dexun Jiang & Yiting Guo & Jie Liu & Hao Zhu & Zhijuan Qi & Yuanlong Chen, 2021. "Spatiotemporal Assessment of Water Conservation Function for Ecosystem Service Management Using a GIS-Based Data-Fusion Analysis Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4309-4323, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:6785-:d:581286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.