IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i12p6585-d577581.html
   My bibliography  Save this article

A Sustainable Solution to Obtain P-K-Mn Glass Fertilizers from Cheap and Readily Available Wastes

Author

Listed:
  • Cosmin Vancea

    (Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Bd. V. Parvan No. 6, 300223 Timisoara, Romania)

  • Giannin Mosoarca

    (Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Bd. V. Parvan No. 6, 300223 Timisoara, Romania)

  • Simona Popa

    (Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timisoara, Bd. V. Parvan No. 6, 300223 Timisoara, Romania)

Abstract

The sustainable economy framework imposes the adoption of new ways for waste reuse and recycling. In this context, this paper proposes a new alternative to obtain glass fertilizers (agriglasses) by reusing two cheap and easily available wastes, wood ash and manganese rich sludge resulting from drinking water treatment processes for groundwater sources. Glasses were obtained using different amounts of wastes together with (NH 4 ) 2 HPO 4 and K 2 CO 3 as raw materials. The P-K-Mn nutrient solubilization from the obtained glasses was investigated using a citric acid solution. The kinetics of the leaching process was studied after 1, 7, 14, 21 and 28 days, respectively. The intraparticle diffusion model was used to interpret kinetic data. Two distinct stages of the ion leaching process were recorded for all of the studied compositions: first through intraparticle diffusion (the rate-controlling stage) and second through diffusion through the particle–medium interface. The fertilization effect of the obtained agriglasses was studied on a barley crop. The specific plant growth parameters of germination percentage, average plant height, biomass and relative growth rate were determinate. The positive impact of the agriglasses upon the plants biomass and relative growth rate was highlighted. The effects of agriglasses can be tuned through glass compositions that affect the solubility of the nutrients.

Suggested Citation

  • Cosmin Vancea & Giannin Mosoarca & Simona Popa, 2021. "A Sustainable Solution to Obtain P-K-Mn Glass Fertilizers from Cheap and Readily Available Wastes," IJERPH, MDPI, vol. 18(12), pages 1-12, June.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:12:p:6585-:d:577581
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/12/6585/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/12/6585/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Caroline Gaudreault & Ilich Lama & Derek Sain, 2020. "Is the beneficial use of wood ash environmentally beneficial? A screening‐level life cycle assessment and uncertainty analysis," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1300-1309, December.
    2. Grzegorz Zając & Joanna Szyszlak-Bargłowicz & Wojciech Gołębiowski & Małgorzata Szczepanik, 2018. "Chemical Characteristics of Biomass Ashes," Energies, MDPI, vol. 11(11), pages 1-15, October.
    3. Guo, Yafei & Zhao, Chuanwen & Chen, Xiaoping & Li, Changhai, 2015. "CO2 capture and sorbent regeneration performances of some wood ash materials," Applied Energy, Elsevier, vol. 137(C), pages 26-36.
    4. Siddique, Rafat, 2012. "Utilization of wood ash in concrete manufacturing," Resources, Conservation & Recycling, Elsevier, vol. 67(C), pages 27-33.
    5. Usmani, Zeba & Sharma, Minaxi & Karpichev, Yevgen & Pandey, Ashok & Chander Kuhad, Ramesh & Bhat, Rajeev & Punia, Rajesh & Aghbashlo, Mortaza & Tabatabaei, Meisam & Gupta, Vijai Kumar, 2020. "Advancement in valorization technologies to improve utilization of bio-based waste in bioeconomy context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Wojciech Rzeźnik & Ilona Rzeźnik & Paulina Mielcarek-Bocheńska & Mateusz Urbański, 2023. "Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler," Energies, MDPI, vol. 16(18), pages 1-17, September.
    3. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Elżbieta Rolka & Andrzej Cezary Żołnowski & Mirosław Wyszkowski & Weronika Zych & Anna Skorwider-Namiotko, 2023. "Wood Biomass Ash (WBA) from the Heat Production Process as a Mineral Amendment for Improving Selected Soil Properties," Energies, MDPI, vol. 16(13), pages 1-17, July.
    5. Małgorzata Sieradzka & Agata Mlonka-Mędrala & Izabela Kalemba-Rec & Markus Reinmöller & Felix Küster & Wojciech Kalawa & Aneta Magdziarz, 2022. "Evaluation of Physical and Chemical Properties of Residue from Gasification of Biomass Wastes," Energies, MDPI, vol. 15(10), pages 1-19, May.
    6. Zhang, Xiaowen & Zhang, Xin & Liu, Helei & Li, Wensheng & Xiao, Min & Gao, Hongxia & Liang, Zhiwu, 2017. "Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts," Applied Energy, Elsevier, vol. 202(C), pages 673-684.
    7. Dominik Noll & Christian Lauk & Willi Haas & Simron Jit Singh & Panos Petridis & Dominik Wiedenhofer, 2022. "The sociometabolic transition of a small Greek island: Assessing stock dynamics, resource flows, and material circularity from 1929 to 2019," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 577-591, April.
    8. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Andrzej Greinert & Maria Mrówczyńska & Radosław Grech & Wojciech Szefner, 2020. "The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces," Energies, MDPI, vol. 13(2), pages 1-17, January.
    10. Elżbieta Jarosz-Krzemińska & Joanna Poluszyńska, 2020. "Repurposing Fly Ash Derived from Biomass Combustion in Fluidized Bed Boilers in Large Energy Power Plants as a Mineral Soil Amendment," Energies, MDPI, vol. 13(18), pages 1-21, September.
    11. Andrzej Greinert & Maria Mrówczyńska & Wojciech Szefner, 2019. "Study on the Possibilities of Natural Use of Ash Granulate Obtained from the Combustion of Pellets from Plant Biomass," Energies, MDPI, vol. 12(13), pages 1-19, July.
    12. Sławomir Obidziński & Michał Puchlik & Magdalena Dołżyńska, 2020. "Pelletization of Post-Harvest Tobacco Waste and Investigation of Flue Gas Emissions from Pellet Combustion," Energies, MDPI, vol. 13(22), pages 1-17, November.
    13. Adeleke, Adekunle A. & Ikubanni, Peter P. & Emmanuel, Stephen S. & Fajobi, Moses O. & Nwachukwu, Praise & Adesibikan, Ademidun A. & Odusote, Jamiu K. & Adeyemi, Emmanuel O. & Abioye, Oluwaseyi M. & Ok, 2024. "A comprehensive review on the similarity and disparity of torrefied biomass and coal properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    14. Grażyna Łaska & Ayodeji Raphael Ige, 2023. "A Review: Assessment of Domestic Solid Fuel Sources in Nigeria," Energies, MDPI, vol. 16(12), pages 1-20, June.
    15. Izabella Maj & Sylwester Kalisz & Szymon Ciukaj, 2022. "Properties of Animal-Origin Ash—A Valuable Material for Circular Economy," Energies, MDPI, vol. 15(4), pages 1-15, February.
    16. Magdalena Dołżyńska & Sławomir Obidziński & Jolanta Piekut & Güray Yildiz, 2020. "The Utilization of Plum Stones for Pellet Production and Investigation of Post-Combustion Flue Gas Emissions," Energies, MDPI, vol. 13(19), pages 1-19, October.
    17. Liza Nuriati Lim Kim Choo & Osumanu Haruna Ahmed & Nik Muhamad Nik Majid & Zakry Fitri Abd Aziz, 2021. "Pineapple Residue Ash Reduces Carbon Dioxide and Nitrous Oxide Emissions in Pineapple Cultivation on Tropical Peat Soils at Saratok, Malaysia," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    18. Liu, Yamin & Yu, Xiaojing, 2018. "Carbon dioxide adsorption properties and adsorption/desorption kinetics of amine-functionalized KIT-6," Applied Energy, Elsevier, vol. 211(C), pages 1080-1088.
    19. Małgorzata Szostek & Ewa Szpunar-Krok & Marta Jańczak-Pieniążek & Anna Ilek, 2022. "Short-Term Effect of Fly Ash from Biomass Combustion on Spring Rape Plants Growth, Nutrient, and Trace Elements Accumulation, and Soil Properties," IJERPH, MDPI, vol. 20(1), pages 1-25, December.
    20. Papurello, Davide & Silvestri, Silvia & Biasioli, Franco & Lombardi, Lidia, 2022. "Wood ash biomethane upgrading system: A case study," Renewable Energy, Elsevier, vol. 182(C), pages 702-712.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:12:p:6585-:d:577581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.