IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i12p6261-d572050.html
   My bibliography  Save this article

Determinant Powers of Socioeconomic Factors and Their Interactive Impacts on Particulate Matter Pollution in North China

Author

Listed:
  • Xiangxue Zhang

    (Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China
    State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China)

  • Yue Lin

    (Department of Geography, The Ohio State University, Columbus, OH 43210, USA)

  • Changxiu Cheng

    (Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China
    State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
    National Tibetan Plateau Data Center, Beijing 100101, China)

  • Junming Li

    (School of Statistics, Shanxi University of Finance and Economics, Taiyuan 030006, China)

Abstract

Severe air pollution has significantly impacted climate and human health worldwide. In this study, global and local Moran’s I was used to examine the spatial autocorrelation of PM 2.5 pollution in North China from 2000–2017, using data obtained from Atmospheric Composition Analysis Group of Dalhousie University. The determinant powers and their interactive effects of socioeconomic factors on this pollutant are then quantified using a non-linear model, GeoDetector. Our experiments show that between 2000 and 2017, PM 2.5 pollution globally increased and exhibited a significant positive global and local autocorrelation. The greatest factor affecting PM 2.5 pollution was population density. Population density, road density, and urbanization showed a tendency to first increase and then decrease, while the number of industries and industrial output revealed a tendency to increase continuously. From a long-term perspective, the interactive effects of road density and industrial output, road density, and the number of industries were amongst the highest. These findings can be used to develop the effective policy to reduce PM 2.5 pollution, such as, due to the significant spatial autocorrelation between regions, the government should pay attention to the importance of regional joint management of PM 2.5 pollution.

Suggested Citation

  • Xiangxue Zhang & Yue Lin & Changxiu Cheng & Junming Li, 2021. "Determinant Powers of Socioeconomic Factors and Their Interactive Impacts on Particulate Matter Pollution in North China," IJERPH, MDPI, vol. 18(12), pages 1-15, June.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:12:p:6261-:d:572050
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/12/6261/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/12/6261/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yazhu Wang & Xuejun Duan & Lei Wang, 2019. "Spatial-Temporal Evolution of PM 2.5 Concentration and its Socioeconomic Influence Factors in Chinese Cities in 2014–2017," IJERPH, MDPI, vol. 16(6), pages 1-18, March.
    2. Rodrigo Puentes & Carolina Marchant & Víctor Leiva & Jorge I. Figueroa-Zúñiga & Fabrizio Ruggeri, 2021. "Predicting PM2.5 and PM10 Levels during Critical Episodes Management in Santiago, Chile, with a Bivariate Birnbaum-Saunders Log-Linear Model," Mathematics, MDPI, vol. 9(6), pages 1-24, March.
    3. Salim, Ruhul A. & Shafiei, Sahar, 2014. "Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis," Economic Modelling, Elsevier, vol. 38(C), pages 581-591.
    4. Cai-Rong Lou & Hong-Yu Liu & Yu-Feng Li & Yu-Ling Li, 2016. "Socioeconomic Drivers of PM 2.5 in the Accumulation Phase of Air Pollution Episodes in the Yangtze River Delta of China," IJERPH, MDPI, vol. 13(10), pages 1-19, September.
    5. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hansol Mun & Mengying Li & Juchul Jung, 2022. "Spatial-Temporal Characteristics and Influencing Factors of Particulate Matter: Geodetector Approach," Land, MDPI, vol. 11(12), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangxue Zhang & Changxiu Cheng, 2022. "Temporal and Spatial Heterogeneity of PM 2.5 Related to Meteorological and Socioeconomic Factors across China during 2000–2018," IJERPH, MDPI, vol. 19(2), pages 1-15, January.
    2. Jingyuan Li & Jinhua Cheng & Yang Wen & Jingyu Cheng & Zhong Ma & Peiqi Hu & Shurui Jiang, 2022. "The Cause of China’s Haze Pollution: City Level Evidence Based on the Extended STIRPAT Model," IJERPH, MDPI, vol. 19(8), pages 1-18, April.
    3. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    4. Héctor Jorquera & Ana María Villalobos, 2020. "Combining Cluster Analysis of Air Pollution and Meteorological Data with Receptor Model Results for Ambient PM 2.5 and PM 10," IJERPH, MDPI, vol. 17(22), pages 1-25, November.
    5. Ellen Banzhaf & Sally Anderson & Gwendoline Grandin & Richard Hardiman & Anne Jensen & Laurence Jones & Julius Knopp & Gregor Levin & Duncan Russel & Wanben Wu & Jun Yang & Marianne Zandersen, 2022. "Urban-Rural Dependencies and Opportunities to Design Nature-Based Solutions for Resilience in Europe and China," Land, MDPI, vol. 11(4), pages 1-25, March.
    6. Yi Yang & Jie Li & Guobin Zhu & Qiangqiang Yuan, 2019. "Spatio–Temporal Relationship and Evolvement of Socioeconomic Factors and PM 2.5 in China During 1998–2016," IJERPH, MDPI, vol. 16(7), pages 1-24, March.
    7. Rogers Kanee & Precious Ede & Omosivie Maduka & Golden Owhonda & Eric Aigbogun & Khalaf F. Alsharif & Ahmed H. Qasem & Shadi S. Alkhayyat & Gaber El-Saber Batiha, 2021. "Polycyclic Aromatic Hydrocarbon Levels in Wistar Rats Exposed to Ambient Air of Port Harcourt, Nigeria: An Indicator for Tissue Toxicity," IJERPH, MDPI, vol. 18(11), pages 1-21, May.
    8. Hongjun Yu & Jiali Cheng & Shelby Paige Gordon & Ruopeng An & Miao Yu & Xiaodan Chen & Qingli Yue & Jun Qiu, 2018. "Impact of Air Pollution on Sedentary Behavior: A Cohort Study of Freshmen at a University in Beijing, China," IJERPH, MDPI, vol. 15(12), pages 1-12, December.
    9. Stefani Kulebanova & Jana Prodanova & Aleksandra Dedinec & Trifce Sandev & Desheng Wu & Ljupco Kocarev, 2024. "Media Sentiment on Air Pollution: Seasonal Trends in Relation to PM10 Levels," Sustainability, MDPI, vol. 16(15), pages 1-20, July.
    10. Sowmya Malamardi & Katrina A. Lambert & Attahalli Shivanarayanaprasad Praveena & Mahesh Padukudru Anand & Bircan Erbas, 2022. "Time Trends of Greenspaces, Air Pollution, and Asthma Prevalence among Children and Adolescents in India," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    11. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    12. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    13. Feng Dong & Yuling Pan, 2020. "Evolution of Renewable Energy in BRI Countries: A Combined Econometric and Decomposition Approach," IJERPH, MDPI, vol. 17(22), pages 1-18, November.
    14. Liu, Haoming & Salvo, Alberto, 2017. "Severe Air Pollution and School Absences: Longitudinal Data on Expatriates in North China," IZA Discussion Papers 11134, Institute of Labor Economics (IZA).
    15. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    16. Lili Sun & Huijuan Cui & Quansheng Ge, 2021. "Driving Factors and Future Prediction of Carbon Emissions in the ‘Belt and Road Initiative’ Countries," Energies, MDPI, vol. 14(17), pages 1-21, September.
    17. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    18. Usman, Muhammad & Khalid, Khaizran & Mehdi, Muhammad Abuzar, 2021. "What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization," Renewable Energy, Elsevier, vol. 168(C), pages 1165-1176.
    19. Chien, Fengsheng & Anwar, Ahsan & Hsu, Ching-Chi & Sharif, Arshian & Razzaq, Asif & Sinha, Avik, 2021. "The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries," Technology in Society, Elsevier, vol. 65(C).
    20. K. K. Shukla & Raju Attada & Aman W. Khan & Prashant Kumar, 2022. "Evaluation of extreme dust storm over the northwest Indo-Gangetic plain using WRF-Chem model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1887-1910, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:12:p:6261-:d:572050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.