IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i9p3122-d352360.html
   My bibliography  Save this article

Screening of Heavy Metal-Immobilizing Bacteria and Its Effect on Reducing Cd 2+ and Pb 2+ Concentrations in Water Spinach ( Ipomoea aquatic Forsk.)

Author

Listed:
  • Tiejun Wang

    (Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
    State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China)

  • Xiaoyu Wang

    (Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China)

  • Wei Tian

    (Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China)

  • Lunguang Yao

    (Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China)

  • Yadong Li

    (State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China)

  • Zhaojin Chen

    (Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China)

  • Hui Han

    (Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China)

Abstract

Microbial immobilization is considered as a novel and environmentally friendly technology that uses microbes to reduce heavy metals accumulation in plants. To explore microbial resources which are useful in these applications, three water spinach rhizosphere soils polluted by different levels of heavy metals (heavy pollution (CQ), medium pollution (JZ), and relative clean (NF)) were collected. The community composition of heavy metal-immobilizing bacteria in rhizosphere soils and its effects on reducing the Cd 2+ and Pb 2+ concentrations in water spinach were evaluated. Four hundred strains were isolated from the CQ (belonging to 3 phyla and 14 genera), JZ (belonging to 4 phyla and 25 genera) and NF (belonged to 6 phyla and 34 genera) samples, respectively. In the CQ sample, 137 strains showed a strong ability to immobilize Cd 2+ and Pb 2+ , giving Cd 2+ and Pb 2+ removal rates of greater than 80% in solution; Brevundimonas , Serratia , and Pseudoarthrobacter were the main genera. In total, 62 strains showed a strong ability to immobilize Cd 2+ and Pb 2+ in the JZ sample and Bacillus and Serratia were the main genera. A total of 22 strains showed a strong ability to immobilize Cd 2+ and Pb 2+ in the NF sample, and Bacillus was the main genus. Compared to the control, Enterobacter bugandensis CQ-7, Bacillus thuringensis CQ-33, and Klebsiella michiganensis CQ-169 significantly increased the dry weight (17.16–148%) of water spinach and reduced the contents of Cd 2+ (59.78–72.41%) and Pb 2+ (43.36–74.21%) in water spinach. Moreover, the soluble protein and Vc contents in the shoots of water spinach were also significantly increased (72.1–193%) in the presence of strains CQ-7, CQ-33 and CQ-169 compared to the control. In addition, the contents of Cd and Pb in the shoots of water spinach meet the standard for limit of Cd 2+ and Pb 2+ in vegetables in the presence of strains CQ-7, CQ-33 and CQ-169. Thus, the results provide strains as resources and a theoretical basis for the remediation of Cd- and Pb-contaminated farmlands for the safe production of vegetables.

Suggested Citation

  • Tiejun Wang & Xiaoyu Wang & Wei Tian & Lunguang Yao & Yadong Li & Zhaojin Chen & Hui Han, 2020. "Screening of Heavy Metal-Immobilizing Bacteria and Its Effect on Reducing Cd 2+ and Pb 2+ Concentrations in Water Spinach ( Ipomoea aquatic Forsk.)," IJERPH, MDPI, vol. 17(9), pages 1-16, April.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:9:p:3122-:d:352360
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/9/3122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/9/3122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kui Cai & Chang Li, 2019. "Street Dust Heavy Metal Pollution Source Apportionment and Sustainable Management in A Typical City—Shijiazhuang, China," IJERPH, MDPI, vol. 16(14), pages 1-15, July.
    2. Xingqing Zhao & Min Wang & Hui Wang & Ding Tang & Jian Huang & Yu Sun, 2019. "Study on the Remediation of Cd Pollution by the Biomineralization of Urease-Producing Bacteria," IJERPH, MDPI, vol. 16(2), pages 1-14, January.
    3. Sonomdagva Chonokhuu & Chultem Batbold & Byambatseren Chuluunpurev & Enkhchimeg Battsengel & Batsuren Dorjsuren & Batdelger Byambaa, 2019. "Contamination and Health Risk Assessment of Heavy Metals in the Soil of Major Cities in Mongolia," IJERPH, MDPI, vol. 16(14), pages 1-15, July.
    4. Zigang Li & Peng Wang & Xiaoyu Yue & Jingtao Wang & Baozeng Ren & Lingbo Qu & Hui Han, 2019. "Effects of Bacillus thuringiensis HC-2 Combined with Biochar on the Growth and Cd and Pb Accumulation of Radish in a Heavy Metal-Contaminated Farmland under Field Conditions," IJERPH, MDPI, vol. 16(19), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zigang Li & Peng Wang & Xiaoyu Yue & Jingtao Wang & Baozeng Ren & Lingbo Qu & Hui Han, 2019. "Effects of Bacillus thuringiensis HC-2 Combined with Biochar on the Growth and Cd and Pb Accumulation of Radish in a Heavy Metal-Contaminated Farmland under Field Conditions," IJERPH, MDPI, vol. 16(19), pages 1-15, September.
    2. Liang Xiao & Yong Zhou & He Huang & Yu-Jie Liu & Ke Li & Meng-Yao Li & Yang Tian & Fei Wu, 2020. "Application of Geostatistical Analysis and Random Forest for Source Analysis and Human Health Risk Assessment of Potentially Toxic Elements (PTEs) in Arable Land Soil," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    3. Huanhuan Shi & Min Zeng & Hongxia Peng & Changsheng Huang & Huimin Sun & Qingqin Hou & Pengcheng Pi, 2022. "Health Risk Assessment of Heavy Metals in Groundwater of Hainan Island Using the Monte Carlo Simulation Coupled with the APCS/MLR Model," IJERPH, MDPI, vol. 19(13), pages 1-18, June.
    4. Jaskaran Kaur & Sartaj Ahmad Bhat & Navdeep Singh & Sandip Singh Bhatti & Varinder Kaur & Jatinder Kaur Katnoria, 2022. "Assessment of the Heavy Metal Contamination of Roadside Soils Alongside Buddha Nullah, Ludhiana, (Punjab) India," IJERPH, MDPI, vol. 19(3), pages 1-24, January.
    5. Kui Cai & Chang Li, 2022. "Ecological Risk, Input Flux, and Source of Heavy Metals in the Agricultural Plain of Hebei Province, China," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
    6. Xiaowei Xu & Jing Hua & Houhu Zhang & Zehua Zhao & Yi Wang & Dapeng Zhang & Jun Zhang & Xiaoxi Chen, 2021. "Environmental Risk Assessment of Recycled Products of Spent Coppery Etchant in Jiangsu Province, China," IJERPH, MDPI, vol. 18(15), pages 1-9, July.
    7. Wenhao Yang & Wenwen Luo & Tong Sun & Yingming Xu & Yuebing Sun, 2022. "Adsorption Performance of Cd(II) by Chitosan-Fe 3 O 4 -Modified Fish Bone Char," IJERPH, MDPI, vol. 19(3), pages 1-14, January.
    8. Carla Candeias & Estela Vicente & Mário Tomé & Fernando Rocha & Paula Ávila & Alves Célia, 2020. "Geochemical, Mineralogical and Morphological Characterisation of Road Dust and Associated Health Risks," IJERPH, MDPI, vol. 17(5), pages 1-18, February.
    9. Sheng Wang & Longyang Fang & Malcom Frimpong Dapaah & Qijian Niu & Liang Cheng, 2023. "Bio-Remediation of Heavy Metal-Contaminated Soil by Microbial-Induced Carbonate Precipitation (MICP)—A Critical Review," Sustainability, MDPI, vol. 15(9), pages 1-20, May.
    10. Enkhjargal Sodnomdarjaa & Frank Lehmkuhl & Daniel Karthe & Alexey V. Alekseenko & Martin Knippertz, 2024. "Tackling soil erosion and contamination within the SDGs framework: a case study of the Erdenet copper-molybdenum mine," Sustainability Nexus Forum, Springer, vol. 32(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:9:p:3122-:d:352360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.