IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i5p1673-d328314.html
   My bibliography  Save this article

Spatially Varying and Scale-Dependent Relationships of Land Use Types with Stream Water Quality

Author

Listed:
  • Se-Rin Park

    (Graduate Program, Department of Forestry and Landscape Architecture, Konkuk University, Gwangjin-Gu, Seoul 05029, Korea)

  • Sang-Woo Lee

    (Department of Forestry and Landscape Architecture, Konkuk University, Gwangjin-Gu, Seoul 05029, Korea)

Abstract

Understanding the complex relationships between land use and stream water quality is critical for water pollution control and watershed management. This study aimed to investigate the relationship between land use types and water quality indicators at multiple spatial scales, namely, the watershed and riparian scales, using the ordinary least squares (OLS) and geographically weighted regression (GWR) models. GWR extended traditional regression models, such as OLS to address the spatial variations among variables. Our results indicated that the water quality indicators were significantly affected by agricultural and forested areas at both scales. We found that extensive agricultural land use had negative effects on water quality indicators, whereas, forested areas had positive effects on these indicators. The results also indicated that the watershed scale is effective for management and regulation of watershed land use, as the predictive power of the models is much greater at the watershed scale. The maps of estimated local parameters and local R 2 in GWR models showcased the spatially varying relationships and indicated that the effects of land use on water quality varied over space. The results of this study reinforced the importance of watershed management in the planning, restoration, and management of stream water quality. It is also suggested that planners and managers may need to adopt different strategies, considering watershed characteristics—such as topographic features and meteorological conditions—and the source of pollutants, in managing stream water quality.

Suggested Citation

  • Se-Rin Park & Sang-Woo Lee, 2020. "Spatially Varying and Scale-Dependent Relationships of Land Use Types with Stream Water Quality," IJERPH, MDPI, vol. 17(5), pages 1-22, March.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:5:p:1673-:d:328314
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/5/1673/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/5/1673/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yirigui Yirigui & Sang-Woo Lee & A. Pouyan Nejadhashemi & Matthew R. Herman & Jong-Won Lee, 2019. "Relationships between Riparian Forest Fragmentation and Biological Indicators of Streams," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    2. Jiabo Chen & Jun Lu, 2014. "Effects of Land Use, Topography and Socio-Economic Factors on River Water Quality in a Mountainous Watershed with Intensive Agricultural Production in East China," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-12, August.
    3. Yirigui Yirigui & Sang-Woo Lee & A. Pouyan Nejadhashemi, 2019. "Multi-Scale Assessment of Relationships between Fragmentation of Riparian Forests and Biological Conditions in Streams," Sustainability, MDPI, vol. 11(18), pages 1-24, September.
    4. Peixuan Cheng & Fansheng Meng & Yeyao Wang & Lingsong Zhang & Qi Yang & Mingcen Jiang, 2018. "The Impacts of Land Use Patterns on Water Quality in a Trans-Boundary River Basin in Northeast China Based on Eco-Functional Regionalization," IJERPH, MDPI, vol. 15(9), pages 1-29, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deok-Woo Kim & Eu Gene Chung & Eun Hye Na & Youngseok Kim, 2024. "Spatial Correlations between Nitrogen Budgets and Surface Water and Groundwater Quality in Watersheds with Varied Land Covers," Agriculture, MDPI, vol. 14(3), pages 1-17, March.
    2. Soon-Jin Hwang, 2020. "Eutrophication and the Ecological Health Risk," IJERPH, MDPI, vol. 17(17), pages 1-6, August.
    3. Se-Rin Park & Suyeon Kim & Sang-Woo Lee, 2021. "Evaluating the Relationships between Riparian Land Cover Characteristics and Biological Integrity of Streams Using Random Forest Algorithms," IJERPH, MDPI, vol. 18(6), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Se-Rin Park & Soon-Jin Hwang & Kyungjin An & Sang-Woo Lee, 2021. "Identifying Key Watershed Characteristics That Affect the Biological Integrity of Streams in the Han River Watershed, Korea," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    2. Se-Rin Park & Suyeon Kim & Sang-Woo Lee, 2021. "Evaluating the Relationships between Riparian Land Cover Characteristics and Biological Integrity of Streams Using Random Forest Algorithms," IJERPH, MDPI, vol. 18(6), pages 1-14, March.
    3. Mi-Young Kim & Sang-Woo Lee, 2021. "Regression Tree Analysis for Stream Biological Indicators Considering Spatial Autocorrelation," IJERPH, MDPI, vol. 18(10), pages 1-19, May.
    4. Md Mamun & Kwang-Guk An, 2021. "Application of Multivariate Statistical Techniques and Water Quality Index for the Assessment of Water Quality and Apportionment of Pollution Sources in the Yeongsan River, South Korea," IJERPH, MDPI, vol. 18(16), pages 1-23, August.
    5. Quan Wang & Xianhua Wu & Bin Zhao & Jie Qin & Tingchun Peng, 2015. "Combined Multivariate Statistical Techniques, Water Pollution Index (WPI) and Daniel Trend Test Methods to Evaluate Temporal and Spatial Variations and Trends of Water Quality at Shanchong River in th," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-17, April.
    6. Batara Surya & Syafri Syafri & Hernita Sahban & Harry Hardian Sakti, 2020. "Natural Resource Conservation Based on Community Economic Empowerment: Perspectives on Watershed Management and Slum Settlements in Makassar City, South Sulawesi, Indonesia," Land, MDPI, vol. 9(4), pages 1-31, March.
    7. Nametso Matomela & Tianxin Li & Peng Zhang & Harrison Odion Ikhumhen & Namir Domingos Raimundo Lopes, 2023. "Role of Landscape and Land-Use Transformation on Nonpoint Source Pollution and Runoff Distribution in the Dongsheng Basin, China," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    8. Xiaohong Chen & Guodong Yi & Jia Liu & Xiang Liu & Yang Chen, 2018. "Evaluating Economic Growth, Industrial Structure, and Water Quality of the Xiangjiang River Basin in China Based on a Spatial Econometric Approach," IJERPH, MDPI, vol. 15(10), pages 1-18, September.
    9. Lorena Alves Carvalho Nascimento & Vivek Shandas, 2021. "Integrating Diverse Perspectives for Managing Neighborhood Trees and Urban Ecosystem Services in Portland, OR (US)," Land, MDPI, vol. 10(1), pages 1-22, January.
    10. Yichun Xie & Chao Liu & Shujuan Chang & Bin Jiang, 2022. "Urban Sustainability: Integrating Socioeconomic and Environmental Data for Multi-Objective Assessment," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    11. Yirigui Yirigui & Sang-Woo Lee & A. Pouyan Nejadhashemi, 2019. "Multi-Scale Assessment of Relationships between Fragmentation of Riparian Forests and Biological Conditions in Streams," Sustainability, MDPI, vol. 11(18), pages 1-24, September.
    12. Mehdi Aalipour & Naicheng Wu & Nicola Fohrer & Yusef Kianpoor Kalkhajeh & Bahman Jabbarian Amiri, 2023. "Examining the Influence of Landscape Patch Shapes on River Water Quality," Land, MDPI, vol. 12(5), pages 1-15, May.
    13. Lisu Chen & Qiong Wei & Qiang Fu & Daolun Feng, 2021. "Spatiotemporal Evolution Analysis of Habitat Quality under High-Speed Urbanization: A Case Study of Urban Core Area of China Lin-Gang Free Trade Zone (2002–2019)," Land, MDPI, vol. 10(2), pages 1-21, February.
    14. Qinghui You & Na Fang & Lingling Liu & Wenjing Yang & Li Zhang & Yeqiao Wang, 2019. "Effects of land use, topography, climate and socio-economic factors on geographical variation pattern of inland surface water quality in China," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-14, June.
    15. Pingyang Liu & Juan M. Moreno & Peiying Song & Elona Hoover & Marie K. Harder, 2016. "The Use of Oral Histories to Identify Criteria for Future Scenarios of Sustainable Farming in the South Yangtze River, China," Sustainability, MDPI, vol. 8(9), pages 1-24, August.
    16. Jiabo Chen & Fayun Li & Zhiping Fan & Yanjie Wang, 2016. "Integrated Application of Multivariate Statistical Methods to Source Apportionment of Watercourses in the Liao River Basin, Northeast China," IJERPH, MDPI, vol. 13(10), pages 1-27, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:5:p:1673-:d:328314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.