IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0217840.html
   My bibliography  Save this article

Effects of land use, topography, climate and socio-economic factors on geographical variation pattern of inland surface water quality in China

Author

Listed:
  • Qinghui You
  • Na Fang
  • Lingling Liu
  • Wenjing Yang
  • Li Zhang
  • Yeqiao Wang

Abstract

The deterioration of water quality has become a primary environmental concern worldwide. Understanding the status of water quality and identifying the influencing factors are important for water resources management. However, reported analyses have mostly been conducted in small and focused areas. It is still unclear if factors driving spatial variation in water quality would be different in extended spatial scales. In this paper, we analyzed spatial pattern of inland surface water quality in China using a dataset with four water quality parameters (i.e., pH, DO, NH4+-N and CODMn) and the water quality level. We tested the effects of anthropogenic (i.e., land use and socio-economic) and natural (i.e., climatic and topographic) factors on spatial variation in water quality. The study concluded that the overall inland surface water quality in China was at level III (fair). Water quality level was strongly correlated with CODMn and NH4+-N concentration. In contrast to reported studies that suggested land use patterns were the determinants of inland surface water quality, this study revealed that both anthropogenic and natural factors played important roles in explaining spatial variation of inland surface water quality in China. Among the tested explanatory variables, mean elevation within watershed appeared as the best predictor for pH, while annual precipitation and mean air temperature were the most important explanatory variables for CODMn and DO, respectively. NH4+-N concentration and water quality level were most strongly correlated with the percent of forest cover in watershed. Compared to studies at smaller spatial scales, this study found different influencing factors of surface water quality, suggesting that factors may play different roles at different spatial scales of consideration. Therefore management policies and measures in water quality control must be established and implemented accordingly. Since currently adopted parameters for monitoring of inland surface water quality in China are largely influenced by natural variables, additional physicochemical and biological indicators are needed for a robust assessment of human impacts on water quality.

Suggested Citation

  • Qinghui You & Na Fang & Lingling Liu & Wenjing Yang & Li Zhang & Yeqiao Wang, 2019. "Effects of land use, topography, climate and socio-economic factors on geographical variation pattern of inland surface water quality in China," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-14, June.
  • Handle: RePEc:plo:pone00:0217840
    DOI: 10.1371/journal.pone.0217840
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217840
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0217840&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0217840?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiabo Chen & Jun Lu, 2014. "Effects of Land Use, Topography and Socio-Economic Factors on River Water Quality in a Mountainous Watershed with Intensive Agricultural Production in East China," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaige Lei & Yifan Wu & Feng Li & Jiayu Yang & Mingtao Xiang & Yi Li & Yan Li, 2021. "Relating Land Use/Cover and Landscape Pattern to the Water Quality under the Simulation of SWAT in a Reservoir Basin, Southeast China," Sustainability, MDPI, vol. 13(19), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Mamun & Kwang-Guk An, 2021. "Application of Multivariate Statistical Techniques and Water Quality Index for the Assessment of Water Quality and Apportionment of Pollution Sources in the Yeongsan River, South Korea," IJERPH, MDPI, vol. 18(16), pages 1-23, August.
    2. Quan Wang & Xianhua Wu & Bin Zhao & Jie Qin & Tingchun Peng, 2015. "Combined Multivariate Statistical Techniques, Water Pollution Index (WPI) and Daniel Trend Test Methods to Evaluate Temporal and Spatial Variations and Trends of Water Quality at Shanchong River in th," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-17, April.
    3. Batara Surya & Syafri Syafri & Hernita Sahban & Harry Hardian Sakti, 2020. "Natural Resource Conservation Based on Community Economic Empowerment: Perspectives on Watershed Management and Slum Settlements in Makassar City, South Sulawesi, Indonesia," Land, MDPI, vol. 9(4), pages 1-31, March.
    4. Se-Rin Park & Soon-Jin Hwang & Kyungjin An & Sang-Woo Lee, 2021. "Identifying Key Watershed Characteristics That Affect the Biological Integrity of Streams in the Han River Watershed, Korea," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    5. Se-Rin Park & Sang-Woo Lee, 2020. "Spatially Varying and Scale-Dependent Relationships of Land Use Types with Stream Water Quality," IJERPH, MDPI, vol. 17(5), pages 1-22, March.
    6. Yichun Xie & Chao Liu & Shujuan Chang & Bin Jiang, 2022. "Urban Sustainability: Integrating Socioeconomic and Environmental Data for Multi-Objective Assessment," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    7. Mehdi Aalipour & Naicheng Wu & Nicola Fohrer & Yusef Kianpoor Kalkhajeh & Bahman Jabbarian Amiri, 2023. "Examining the Influence of Landscape Patch Shapes on River Water Quality," Land, MDPI, vol. 12(5), pages 1-15, May.
    8. Pingyang Liu & Juan M. Moreno & Peiying Song & Elona Hoover & Marie K. Harder, 2016. "The Use of Oral Histories to Identify Criteria for Future Scenarios of Sustainable Farming in the South Yangtze River, China," Sustainability, MDPI, vol. 8(9), pages 1-24, August.
    9. Jiabo Chen & Fayun Li & Zhiping Fan & Yanjie Wang, 2016. "Integrated Application of Multivariate Statistical Methods to Source Apportionment of Watercourses in the Liao River Basin, Northeast China," IJERPH, MDPI, vol. 13(10), pages 1-27, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0217840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.