IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v13y2016i10p1035-d81145.html
   My bibliography  Save this article

Integrated Application of Multivariate Statistical Methods to Source Apportionment of Watercourses in the Liao River Basin, Northeast China

Author

Listed:
  • Jiabo Chen

    (National & Local United Engineering Laboratory of Petroleum Chemical Process Operation, Optimization and Energy Conservation Technology, Liaoning Shihua University, Fushun 113001, China
    Institute of Eco-Environmental Sciences, Liaoning Shihua University, Fushun 113001, China)

  • Fayun Li

    (National & Local United Engineering Laboratory of Petroleum Chemical Process Operation, Optimization and Energy Conservation Technology, Liaoning Shihua University, Fushun 113001, China
    Institute of Eco-Environmental Sciences, Liaoning Shihua University, Fushun 113001, China)

  • Zhiping Fan

    (National & Local United Engineering Laboratory of Petroleum Chemical Process Operation, Optimization and Energy Conservation Technology, Liaoning Shihua University, Fushun 113001, China
    Institute of Eco-Environmental Sciences, Liaoning Shihua University, Fushun 113001, China)

  • Yanjie Wang

    (National & Local United Engineering Laboratory of Petroleum Chemical Process Operation, Optimization and Energy Conservation Technology, Liaoning Shihua University, Fushun 113001, China
    Institute of Eco-Environmental Sciences, Liaoning Shihua University, Fushun 113001, China)

Abstract

Source apportionment of river water pollution is critical in water resource management and aquatic conservation. Comprehensive application of various GIS-based multivariate statistical methods was performed to analyze datasets (2009–2011) on water quality in the Liao River system (China). Cluster analysis (CA) classified the 12 months of the year into three groups (May–October, February–April and November–January) and the 66 sampling sites into three groups (groups A, B and C) based on similarities in water quality characteristics. Discriminant analysis (DA) determined that temperature, dissolved oxygen (DO), pH, chemical oxygen demand (COD Mn ) , 5-day biochemical oxygen demand (BOD 5 ), NH 4 + –N, total phosphorus (TP) and volatile phenols were significant variables affecting temporal variations, with 81.2% correct assignments. Principal component analysis (PCA) and positive matrix factorization (PMF) identified eight potential pollution factors for each part of the data structure, explaining more than 61% of the total variance. Oxygen-consuming organics from cropland and woodland runoff were the main latent pollution factor for group A. For group B, the main pollutants were oxygen-consuming organics, oil, nutrients and fecal matter. For group C, the evaluated pollutants primarily included oxygen-consuming organics, oil and toxic organics.

Suggested Citation

  • Jiabo Chen & Fayun Li & Zhiping Fan & Yanjie Wang, 2016. "Integrated Application of Multivariate Statistical Methods to Source Apportionment of Watercourses in the Liao River Basin, Northeast China," IJERPH, MDPI, vol. 13(10), pages 1-27, October.
  • Handle: RePEc:gam:jijerp:v:13:y:2016:i:10:p:1035-:d:81145
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/13/10/1035/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/13/10/1035/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiabo Chen & Jun Lu, 2014. "Effects of Land Use, Topography and Socio-Economic Factors on River Water Quality in a Mountainous Watershed with Intensive Agricultural Production in East China," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-12, August.
    2. Hong Yao & Xin Qian & Hailong Gao & Yulei Wang & Bisheng Xia, 2014. "Seasonal and Spatial Variations of Heavy Metals in Two Typical Chinese Rivers: Concentrations, Environmental Risks, and Possible Sources," IJERPH, MDPI, vol. 11(11), pages 1-19, November.
    3. Baoling Duan & Fenwu Liu & Wuping Zhang & Haixia Zheng & Qiang Zhang & Xiaomei Li & Yushan Bu, 2015. "Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China," IJERPH, MDPI, vol. 12(12), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Mamun & Kwang-Guk An, 2021. "Application of Multivariate Statistical Techniques and Water Quality Index for the Assessment of Water Quality and Apportionment of Pollution Sources in the Yeongsan River, South Korea," IJERPH, MDPI, vol. 18(16), pages 1-23, August.
    2. Ana M. Petrović & Sanja Manojlović & Tanja Srejić & Nikola Zlatanović, 2024. "Insights into Land-Use and Demographical Changes: Runoff and Erosion Modifications in the Highlands of Serbia," Land, MDPI, vol. 13(9), pages 1-25, August.
    3. Xueru Guo & Rui Zuo & Li Meng & Jinsheng Wang & Yanguo Teng & Xin Liu & Minhua Chen, 2018. "Seasonal and Spatial Variability of Anthropogenic and Natural Factors Influencing Groundwater Quality Based on Source Apportionment," IJERPH, MDPI, vol. 15(2), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Mamun & Kwang-Guk An, 2021. "Application of Multivariate Statistical Techniques and Water Quality Index for the Assessment of Water Quality and Apportionment of Pollution Sources in the Yeongsan River, South Korea," IJERPH, MDPI, vol. 18(16), pages 1-23, August.
    2. Quan Wang & Xianhua Wu & Bin Zhao & Jie Qin & Tingchun Peng, 2015. "Combined Multivariate Statistical Techniques, Water Pollution Index (WPI) and Daniel Trend Test Methods to Evaluate Temporal and Spatial Variations and Trends of Water Quality at Shanchong River in th," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-17, April.
    3. Xueru Guo & Rui Zuo & Li Meng & Jinsheng Wang & Yanguo Teng & Xin Liu & Minhua Chen, 2018. "Seasonal and Spatial Variability of Anthropogenic and Natural Factors Influencing Groundwater Quality Based on Source Apportionment," IJERPH, MDPI, vol. 15(2), pages 1-19, February.
    4. Baocui Liang & Xiao Qian & Shitao Peng & Xinhui Liu & Lili Bai & Baoshan Cui & Junhong Bai, 2018. "Speciation Variation and Comprehensive Risk Assessment of Metal(loid)s in Surface Sediments of Intertidal Zones," IJERPH, MDPI, vol. 15(10), pages 1-16, September.
    5. Batara Surya & Syafri Syafri & Hernita Sahban & Harry Hardian Sakti, 2020. "Natural Resource Conservation Based on Community Economic Empowerment: Perspectives on Watershed Management and Slum Settlements in Makassar City, South Sulawesi, Indonesia," Land, MDPI, vol. 9(4), pages 1-31, March.
    6. Baoling Duan & Wuping Zhang & Haixia Zheng & Chunyan Wu & Qiang Zhang & Yushan Bu, 2017. "Comparison of Health Risk Assessments of Heavy Metals and As in Sewage Sludge from Wastewater Treatment Plants (WWTPs) for Adults and Children in the Urban District of Taiyuan, China," IJERPH, MDPI, vol. 14(10), pages 1-14, October.
    7. Turuganti Venkateswarlu & Jagadeesh Anmala, 2024. "Importance of land use factors in the prediction of water quality of the Upper Green River watershed, Kentucky, USA, using random forest," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 23961-23984, September.
    8. Baoling Duan & Qiang Feng, 2022. "Risk Assessment and Potential Analysis of the Agricultural Use of Sewage Sludge in Central Shanxi Province," IJERPH, MDPI, vol. 19(7), pages 1-12, April.
    9. Se-Rin Park & Soon-Jin Hwang & Kyungjin An & Sang-Woo Lee, 2021. "Identifying Key Watershed Characteristics That Affect the Biological Integrity of Streams in the Han River Watershed, Korea," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    10. Se-Rin Park & Sang-Woo Lee, 2020. "Spatially Varying and Scale-Dependent Relationships of Land Use Types with Stream Water Quality," IJERPH, MDPI, vol. 17(5), pages 1-22, March.
    11. Yichun Xie & Chao Liu & Shujuan Chang & Bin Jiang, 2022. "Urban Sustainability: Integrating Socioeconomic and Environmental Data for Multi-Objective Assessment," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    12. Mehdi Aalipour & Naicheng Wu & Nicola Fohrer & Yusef Kianpoor Kalkhajeh & Bahman Jabbarian Amiri, 2023. "Examining the Influence of Landscape Patch Shapes on River Water Quality," Land, MDPI, vol. 12(5), pages 1-15, May.
    13. Xiao Huang & Liping He & Jun Li & Fei Yang & Hongzhuan Tan, 2015. "Different Choices of Drinking Water Source and Different Health Risks in a Rural Population Living Near a Lead/Zinc Mine in Chenzhou City, Southern China," IJERPH, MDPI, vol. 12(11), pages 1-18, November.
    14. Xiao Wang & Nikolaos Katopodes & Chunqi Shen & Hua Wang & Yong Pang & Qi Zhou, 2016. "Control of Pollutants in the Trans-Boundary Area of Taihu Basin, Yangtze Delta," IJERPH, MDPI, vol. 13(12), pages 1-12, December.
    15. Qinghui You & Na Fang & Lingling Liu & Wenjing Yang & Li Zhang & Yeqiao Wang, 2019. "Effects of land use, topography, climate and socio-economic factors on geographical variation pattern of inland surface water quality in China," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-14, June.
    16. Pingyang Liu & Juan M. Moreno & Peiying Song & Elona Hoover & Marie K. Harder, 2016. "The Use of Oral Histories to Identify Criteria for Future Scenarios of Sustainable Farming in the South Yangtze River, China," Sustainability, MDPI, vol. 8(9), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:13:y:2016:i:10:p:1035-:d:81145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.