IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i5p1572-d326489.html
   My bibliography  Save this article

Quercetin and Its Mixture Increase the Stress Resistance of Caenorhabditis elegans to UV-B

Author

Listed:
  • Shi-ming Li

    (College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

  • Dan Liu

    (College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

  • Yi-lin Liu

    (College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

  • Bin Liu

    (College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

  • Xing-huang Chen

    (College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

Abstract

Ultraviolet B (UV-B, 280–320 nm) radiation causes complex molecular reactions in cells, including DNA damage, oxidative stress, and apoptosis. This study designed a mixture consisting of quercetin, luteolin and lycopene and used Caenorhabditis elegans as a model to study the resistance of these natural chemicals to UV-B. Specifically, we have confirmed that quercetin and its mixture can increase the resistance of Caenorhabditis elegans to UV-B through lifespan test, reactive oxygen species level assay, germ cell apoptosis test, embryonic lethal test and RT-qPCR experiments. The results show that quercetin and its mixture prolonged the lifespan of UV-B-irradiated Caenorhabditis elegans and reduced abnormal levels of reactive oxygen species, embryo death, and apoptosis induced by UV-B. The protective effect of quercetin and its mixture may be attributed to its down-regulation of HUS-1 , CEP-1 , EGL-1 and CED-13. Therefore, the results of this research could help the development of UV-B radiation protection agents.

Suggested Citation

  • Shi-ming Li & Dan Liu & Yi-lin Liu & Bin Liu & Xing-huang Chen, 2020. "Quercetin and Its Mixture Increase the Stress Resistance of Caenorhabditis elegans to UV-B," IJERPH, MDPI, vol. 17(5), pages 1-13, February.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:5:p:1572-:d:326489
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/5/1572/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/5/1572/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu Peng & Man Zhang & Lingjun Zheng & Qian Liang & Hanzeng Li & Jeng-Ting Chen & Hongyan Guo & Sawako Yoshina & Yu-Zen Chen & Xiang Zhao & Xiaoqi Wu & Bin Liu & Shohei Mitani & Jau-Song Yu & Ding Xue, 2017. "Cysteine protease cathepsin B mediates radiation-induced bystander effects," Nature, Nature, vol. 547(7664), pages 458-462, July.
    2. Marta Artal-Sanz & Nektarios Tavernarakis, 2009. "Prohibitin couples diapause signalling to mitochondrial metabolism during ageing in C. elegans," Nature, Nature, vol. 461(7265), pages 793-797, October.
    3. Michael O. Hengartner, 2000. "The biochemistry of apoptosis," Nature, Nature, vol. 407(6805), pages 770-776, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao-Ying Wang & Jun-Mei Hao & Qiu-Rong Ren & Hai-Ying Li & Jing-Song Wu & Xiao-Huan Zhu & Jin-Yao Chen & Ya-Nan Wang & Li-Shi Zhang, 2021. "Cytotoxicity and Apoptosis Induced by Chenopodium ambrosioides L. Essential Oil in Human Normal Liver Cell Line L02 via the Endogenous Mitochondrial Pathway Rather Than the Endoplasmic Reticulum Stres," IJERPH, MDPI, vol. 18(14), pages 1-11, July.
    2. Benu George & Pradeep Varathan & T. V. Suchithra, 2020. "Meta-analysis on big data of bioactive compounds from mangrove ecosystem to treat neurodegenerative disease," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(3), pages 1539-1561, March.
    3. Najeeb Ullah & Hae Young Lee & Muhammad Imran Naseer & Ikram Ullah & Joo Won Suh & Myeong Ok Kim, 2011. "Nicotinamide Inhibits Alkylating Agent-Induced Apoptotic Neurodegeneration in the Developing Rat Brain," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-12, December.
    4. Song Zhang & Qianyi Xiao & Zhuqing Shi & Guopeng Yu & Xiao-Pin Ma & Haitao Chen & Pengyin Zhang & Suqin Shen & He-Xi Ge Sai-Yin & Tao-Yang Chen & Pei-Xin Lu & Neng-Jin Wang & Weihua Ren & Peng Huang &, 2017. "Caspase polymorphisms and prognosis of hepatocellular carcinoma," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-13, April.
    5. Samim Sharifi & Prerana Chaudhari & Asya Martirosyan & Alexander Otto Eberhardt & Finja Witt & André Gollowitzer & Lisa Lange & Yvonne Woitzat & Eberechukwu Maryann Okoli & Huahui Li & Norman Rahnis &, 2024. "Reducing the metabolic burden of rRNA synthesis promotes healthy longevity in Caenorhabditis elegans," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Giuseppe Genchi & Alessia Carocci & Graziantonio Lauria & Maria Stefania Sinicropi & Alessia Catalano, 2020. "Nickel: Human Health and Environmental Toxicology," IJERPH, MDPI, vol. 17(3), pages 1-21, January.
    7. Xishan Li & Chengyan Wang & Nan Li & Yali Gao & Zhonglei Ju & Guoxiang Liao & Deqi Xiong, 2021. "Combined Effects of Elevated Temperature and Crude Oil Pollution on Oxidative Stress and Apoptosis in Sea Cucumber ( Apostichopus japonicus , Selenka)," IJERPH, MDPI, vol. 18(2), pages 1-16, January.
    8. Sougata Roy Chowdhury & Suman Sengupta & Subir Biswas & Tridib Kumar Sinha & Ramkrishna Sen & Ratan Kumar Basak & Basudam Adhikari & Arindam Bhattacharyya, 2014. "Bacterial Fucose-Rich Polysaccharide Stabilizes MAPK-Mediated Nrf2/Keap1 Signaling by Directly Scavenging Reactive Oxygen Species during Hydrogen Peroxide-Induced Apoptosis of Human Lung Fibroblast Ce," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-19, November.
    9. Michael Schauperl & Julian E Fuchs & Birgit J Waldner & Roland G Huber & Christian Kramer & Klaus R Liedl, 2015. "Characterizing Protease Specificity: How Many Substrates Do We Need?," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-17, November.
    10. Jun-Won Heo & Su-Zi Yoo & Mi-Hyun No & Dong-Ho Park & Ju-Hee Kang & Tae-Woon Kim & Chang-Ju Kim & Dae-Yun Seo & Jin Han & Jin-Hwan Yoon & Su-Jeen Jung & Hyo-Bum Kwak, 2018. "Exercise Training Attenuates Obesity-Induced Skeletal Muscle Remodeling and Mitochondria-Mediated Apoptosis in the Skeletal Muscle," IJERPH, MDPI, vol. 15(10), pages 1-12, October.
    11. Yue Wang & Sheng-Yuan Wang & Li Jia & Lin Zhang & Jing-Chong Ba & Dan Han & Cui-Ping Yu & Yong-Hui Wu, 2016. "Nickel-Refining Fumes Induced DNA Damage and Apoptosis of NIH/3T3 Cells via Oxidative Stress," IJERPH, MDPI, vol. 13(7), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:5:p:1572-:d:326489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.