IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i19p6993-d418756.html
   My bibliography  Save this article

Identification of Potential Biomarkers and Related Transcription Factors in Peripheral Blood of Tuberculosis Patients

Author

Listed:
  • Longxiang Xie

    (Cell Signal Transduction Laboratory, Bioinformatics Center, Department of Pathology, Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China)

  • Xiaoyu Chao

    (Cell Signal Transduction Laboratory, Bioinformatics Center, Department of Pathology, Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China)

  • Tieshan Teng

    (Cell Signal Transduction Laboratory, Bioinformatics Center, Department of Pathology, Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China)

  • Qiming Li

    (Cell Signal Transduction Laboratory, Bioinformatics Center, Department of Pathology, Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China)

  • Jianping Xie

    (State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Institute of Modern Biopharmaceuticals, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China)

Abstract

Tuberculosis (TB), one major threat to humans, can infect one third of the worldwide population, and cause more than one million deaths each year. This study aimed to identify the effective diagnosis and therapy biomarkers of TB. Hence, we analyzed two microarray datasets (GSE54992 and GSE62525) derived from the Gene Expression Omnibus (GEO) database to find the differentially expressed genes (DEGs) of peripheral blood mononuclear cell (PBMC) between TB patients and healthy specimens. Functional and pathway enrichment of the DEGs were analyzed by Metascape database. Protein-protein interaction (PPI) network among the DEGs were constructed by STRING databases and visualized in Cytoscape software. The related transcription factors regulatory network of the DEGs was also constructed. A total of 190 DEGs including 36 up-regulated genes and 154 down-regulated genes were obtained in TB samples. Gene functional enrichment analysis showed that these DEGs were enriched in T cell activation, chemotaxis, leukocyte activation involved in immune response, cytokine secretion, head development, etc. The top six hub genes (namely, LRRK2, FYN, GART, CCR7, CXCR5, and FASLG) and two significant modules were got from PPI network of DEGs. Vital transcriptional factors, such as FoxC1 and GATA2, were discovered with close interaction with these six hub DEGs. By systemic bioinformatic analysis, many DEGs associated with TB were screened, and these identified hub DEGs may be potential biomarkers for diagnosis and treatment of TB in the future.

Suggested Citation

  • Longxiang Xie & Xiaoyu Chao & Tieshan Teng & Qiming Li & Jianping Xie, 2020. "Identification of Potential Biomarkers and Related Transcription Factors in Peripheral Blood of Tuberculosis Patients," IJERPH, MDPI, vol. 17(19), pages 1-11, September.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:19:p:6993-:d:418756
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/19/6993/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/19/6993/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yingyao Zhou & Bin Zhou & Lars Pache & Max Chang & Alireza Hadj Khodabakhshi & Olga Tanaseichuk & Christopher Benner & Sumit K. Chanda, 2019. "Metascape provides a biologist-oriented resource for the analysis of systems-level datasets," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Yasuhiko Haga & Yoshitaka Sakamoto & Keiko Kajiya & Hitomi Kawai & Miho Oka & Noriko Motoi & Masayuki Shirasawa & Masaya Yotsukura & Shun-Ichi Watanabe & Miyuki Arai & Junko Zenkoh & Kouya Shiraishi &, 2023. "Whole-genome sequencing reveals the molecular implications of the stepwise progression of lung adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Jialiang S. Wang & Tushar Kamath & Courtney M. Mazur & Fatemeh Mirzamohammadi & Daniel Rotter & Hironori Hojo & Christian D. Castro & Nicha Tokavanich & Rushi Patel & Nicolas Govea & Tetsuya Enishi & , 2021. "Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    4. Ryan J. Geusz & Allen Wang & Dieter K. Lam & Nicholas K. Vinckier & Konstantinos-Dionysios Alysandratos & David A. Roberts & Jinzhao Wang & Samy Kefalopoulou & Araceli Ramirez & Yunjiang Qiu & Joshua , 2021. "Sequence logic at enhancers governs a dual mechanism of endodermal organ fate induction by FOXA pioneer factors," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    5. Andreas Herchenröther & Stefanie Gossen & Tobias Friedrich & Alexander Reim & Nadine Daus & Felix Diegmüller & Jörg Leers & Hakimeh Moghaddas Sani & Sarah Gerstner & Leah Schwarz & Inga Stellmacher & , 2023. "The H2A.Z and NuRD associated protein HMG20A controls early head and heart developmental transcription programs," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Aftab Nadeem & Athar Alam & Eric Toh & Si Lhyam Myint & Zia ur Rehman & Tao Liu & Marta Bally & Anna Arnqvist & Hui Wang & Jun Zhu & Karina Persson & Bernt Eric Uhlin & Sun Nyunt Wai, 2021. "Phosphatidic acid-mediated binding and mammalian cell internalization of the Vibrio cholerae cytotoxin MakA," PLOS Pathogens, Public Library of Science, vol. 17(3), pages 1-34, March.
    7. Hao A. Duong & Kenkichi Baba & Jason P. DeBruyne & Alec J. Davidson & Christopher Ehlen & Michael Powell & Gianluca Tosini, 2024. "Environmental circadian disruption re-writes liver circadian proteomes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Xuelong Yao & Zongyang Lu & Zhanying Feng & Lei Gao & Xin Zhou & Min Li & Suijuan Zhong & Qian Wu & Zhenbo Liu & Haofeng Zhang & Zeyuan Liu & Lizhi Yi & Tao Zhou & Xudong Zhao & Jun Zhang & Yong Wang , 2022. "Comparison of chromatin accessibility landscapes during early development of prefrontal cortex between rhesus macaque and human," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Ramachandran Prakasam & Angela Bonadiman & Roberta Andreotti & Emanuela Zuccaro & Davide Dalfovo & Caterina Marchioretti & Debasmita Tripathy & Gianluca Petris & Eric N. Anderson & Alice Migazzi & Lau, 2023. "LSD1/PRMT6-targeting gene therapy to attenuate androgen receptor toxic gain-of-function ameliorates spinobulbar muscular atrophy phenotypes in flies and mice," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    10. Li Guo & Cheng Hu & Yang Liu & Xiaoyu Chen & Deli Song & Runling Shen & Zhanzhen Liu & Xudong Jia & Qinfen Zhang & Yuanzhu Gao & Zhezhi Deng & Tao Zuo & Jun Hu & Wenbo Zhu & Jing Cai & Guangmei Yan & , 2023. "Directed natural evolution generates a next-generation oncolytic virus with a high potency and safety profile," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Mijeong Kim & Yu Jin Jang & Muyoung Lee & Qingqing Guo & Albert J. Son & Nikita A. Kakkad & Abigail B. Roland & Bum-Kyu Lee & Jonghwan Kim, 2024. "The transcriptional regulatory network modulating human trophoblast stem cells to extravillous trophoblast differentiation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Alejandro Gomez Toledo & Eleni Bratanis & Erika Velásquez & Sounak Chowdhury & Berit Olofsson & James T. Sorrentino & Christofer Karlsson & Nathan E. Lewis & Jeffrey D. Esko & Mattias Collin & Oonagh , 2023. "Pathogen-driven degradation of endogenous and therapeutic antibodies during streptococcal infections," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Cecilia Pessoa Rodrigues & Aindrila Chatterjee & Meike Wiese & Thomas Stehle & Witold Szymanski & Maria Shvedunova & Asifa Akhtar, 2021. "Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    14. Tianshi Feng & Xuemei Zhao & Ping Gu & Wah Yang & Cunchuan Wang & Qingyu Guo & Qiaoyun Long & Qing Liu & Ying Cheng & Jin Li & Cynthia Kwan Yui Cheung & Donghai Wu & Xinyu Kong & Yong Xu & Dewei Ye & , 2022. "Adipocyte-derived lactate is a signalling metabolite that potentiates adipose macrophage inflammation via targeting PHD2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Ankur Chakravarthy & Ian Reddin & Stephen Henderson & Cindy Dong & Nerissa Kirkwood & Maxmilan Jeyakumar & Daniela Rothschild Rodriguez & Natalia Gonzalez Martinez & Jacqueline McDermott & Xiaoping Su, 2022. "Integrated analysis of cervical squamous cell carcinoma cohorts from three continents reveals conserved subtypes of prognostic significance," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Thomas L. Maurissen & Alena J. Spielmann & Gabriella Schellenberg & Marc Bickle & Jose Ricardo Vieira & Si Ying Lai & Georgios Pavlou & Sascha Fauser & Peter D. Westenskow & Roger D. Kamm & Héloïse Ra, 2024. "Modeling early pathophysiological phenotypes of diabetic retinopathy in a human inner blood-retinal barrier-on-a-chip," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Elizabeth A. Werren & Geneva R. LaForce & Anshika Srivastava & Delia R. Perillo & Shaokun Li & Katherine Johnson & Safa Baris & Brandon Berger & Samantha L. Regan & Christian D. Pfennig & Sonja Munnik, 2024. "TREX tetramer disruption alters RNA processing necessary for corticogenesis in THOC6 Intellectual Disability Syndrome," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    18. Xiwen Xiong & Chenyan Yang & Wei-Qi He & Jiahui Yu & Yue Xin & Xinge Zhang & Rong Huang & Honghui Ma & Shaofang Xu & Zun Li & Jie Ma & Lin Xu & Qunyi Wang & Kaiqun Ren & Xiaoli S. Wu & Christopher R. , 2022. "Sirtuin 6 maintains epithelial STAT6 activity to support intestinal tuft cell development and type 2 immunity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Elisa Bellucci & Andrea Benazzo & Chunming Xu & Elena Bitocchi & Monica Rodriguez & Saleh Alseekh & Valerio Di Vittori & Tania Gioia & Kerstin Neumann & Gaia Cortinovis & Giulia Frascarelli & Ester Mu, 2023. "Selection and adaptive introgression guided the complex evolutionary history of the European common bean," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    20. Jiayin Peng & Lili Han & Biao Liu & Jiawen Song & Yuang Wang & Kunpeng Wang & Qian Guo & XinYan Liu & Yu Li & Jujin Zhang & Wenqing Wu & Sheng Li & Xin Fu & Cheng-le Zhuang & Weikang Zhang & Shengbao , 2023. "Gli1 marks a sentinel muscle stem cell population for muscle regeneration," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:19:p:6993-:d:418756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.