IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i18p6565-d411144.html
   My bibliography  Save this article

Europe’s War against COVID-19: A Map of Countries’ Disease Vulnerability Using Mortality Indicators

Author

Listed:
  • Alexandra Horobet

    (Department of International Business and Economics, The Bucharest University of Economic Studies, 010374 Bucharest, Romania)

  • Anca Angela Simionescu

    (Carol Davila University of Medicine and Pharmacy, Department of Obstetrics and Gynecology, Filantropia Hospital, 020021 Bucharest, Romania)

  • Dan Gabriel Dumitrescu

    (Department of International Business and Economics, The Bucharest University of Economic Studies, 010374 Bucharest, Romania)

  • Lucian Belascu

    (Department of Management, Marketing and Business Administration, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania)

Abstract

Specific and older age-associated comorbidities increase mortality risk in severe forms of coronavirus disease (COVID-19). We matched COVID-19 comorbidities with causes of death in 28 EU countries for the total population and for the population above 65 years and applied a machine-learning-based tree clustering algorithm on shares of death for COVID-19 comorbidities and for influenza and on their growth rates between 2011 and 2016. We distributed EU countries in clusters and drew a map of the EU populations’ vulnerabilities to COVID-19 comorbidities and to influenza. Noncommunicable diseases had impressive shares of death in the EU but with substantial differences between eastern and western countries. The tree clustering algorithm accurately indicated the presence of western and eastern country clusters, with significantly different patterns of disease shares of death and growth rates. Western populations displayed higher vulnerability to malignancy, blood-related diseases, and diabetes mellitus and lower respiratory diseases, while eastern countries’ populations suffered more from ischaemic heart, cerebrovascular, and circulatory diseases. Dissimilarities between EU countries were also present when influenza was considered. The heat maps of EU populations’ vulnerability to diseases based on mortality indicators constitute the basis for more targeted health policy strategies in a collaborative effort at the EU level.

Suggested Citation

  • Alexandra Horobet & Anca Angela Simionescu & Dan Gabriel Dumitrescu & Lucian Belascu, 2020. "Europe’s War against COVID-19: A Map of Countries’ Disease Vulnerability Using Mortality Indicators," IJERPH, MDPI, vol. 17(18), pages 1-19, September.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:18:p:6565-:d:411144
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/18/6565/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/18/6565/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:cai:poeine:pope_201_0157 is not listed on IDEAS
    2. Raffaele Palladino & Jordy Bollon & Luca Ragazzoni & Francesco Barone-Adesi, 2020. "Excess Deaths and Hospital Admissions for COVID-19 Due to a Late Implementation of the Lockdown in Italy," IJERPH, MDPI, vol. 17(16), pages 1-6, August.
    3. Fionn Murtagh & Pierre Legendre, 2014. "Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 274-295, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maurizio Vichi & Carlo Cavicchia & Patrick J. F. Groenen, 2022. "Hierarchical Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 553-577, November.
    2. Jiao Jieying & Hu Guanyu & Yan Jun, 2021. "A Bayesian marked spatial point processes model for basketball shot chart," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(2), pages 77-90, June.
    3. Paulus, Michal & Kristoufek, Ladislav, 2015. "Worldwide clustering of the corruption perception," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 351-358.
    4. Hyeri Choi & Min Jae Park, 2019. "Evaluating the Efficiency of Governmental Excellence for Social Progress: Focusing on Low- and Lower-Middle-Income Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 111-130, January.
    5. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    6. Grzegorz Maciejewski & Mirosława Malinowska & Barbara Kucharska & Michał Kucia & Beata Kolny, 2021. "Sustainable Development as a Factor Differentiating Consumer Behavior: The Case of Poland," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 934-948.
    7. Giger, Markus & Mutea, Emily & Kiteme, Boniface & Eckert, Sandra & Anseeuw, Ward & Zaehringer, Julie G., 2020. "Large agricultural investments in Kenya’s Nanyuki Area: Inventory and analysis of business models," Land Use Policy, Elsevier, vol. 99(C).
    8. Walker, Nathan L. & Styles, David & Coughlan, Paul & Williams, A. Prysor, 2022. "Cross-sector sustainability benchmarking of major utilities in the United Kingdom," Utilities Policy, Elsevier, vol. 78(C).
    9. Pierre H. H. Schneeberger & Morgan Gueuning & Sophie Welsche & Eveline Hürlimann & Julian Dommann & Cécile Häberli & Jürg E. Frey & Somphou Sayasone & Jennifer Keiser, 2022. "Different gut microbial communities correlate with efficacy of albendazole-ivermectin against soil-transmitted helminthiases," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Abang Zainoren Abang Abdurahman & Syerina Azlin Md Nasir & Wan Fairos Wan Yaacob & Serah Jaya & Suhaili Mokhtar, 2021. "Spatio-Temporal Clustering of Sarawak Malaysia Total Protected Area Visitors," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    11. Mulu Abraha Woldegiorgis & Janet E. Hiller & Wubegzier Mekonnen & Jahar Bhowmik, 2018. "Disparities in maternal health services in sub-Saharan Africa," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 63(4), pages 525-535, May.
    12. Monika Stanny & Łukasz Komorowski & Andrzej Rosner, 2021. "The Socio-Economic Heterogeneity of Rural Areas: Towards a Rural Typology of Poland," Energies, MDPI, vol. 14(16), pages 1-23, August.
    13. Renato Amorim, 2015. "Feature Relevance in Ward’s Hierarchical Clustering Using the L p Norm," Journal of Classification, Springer;The Classification Society, vol. 32(1), pages 46-62, April.
    14. Anca Gabriela Ilie & Marinela Luminita Emanuela Zlatea & Cristina Negreanu & Dan Dumitriu & Alma Pentescu, 2023. "Reliance on Russian Federation Energy Imports and Renewable Energy in the European Union," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(64), pages 780-780, August.
    15. Luiza Ossowska & Dorota Janiszewska & Natalia Bartkowiak-Bakun & Grzegorz Kwiatkowski, 2020. "Energy Consumption Versus Greenhouse Gas Emissions in EU," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 185-198.
    16. Lerato Lerato & Thomas Niesler, 2015. "Clustering Acoustic Segments Using Multi-Stage Agglomerative Hierarchical Clustering," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-24, October.
    17. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News Media vs. FRED-MD for Macroeconomic Forecasting," CESifo Working Paper Series 8639, CESifo.
    18. Sokhna Dieng & Pierre Michel & Abdoulaye Guindo & Kankoe Sallah & El-Hadj Ba & Badara Cissé & Maria Patrizia Carrieri & Cheikh Sokhna & Paul Milligan & Jean Gaudart, 2020. "Application of Functional Data Analysis to Identify Patterns of Malaria Incidence, to Guide Targeted Control Strategies," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    19. Jill F. Lundell & Brennan Bean & Jürgen Symanzik, 2023. "Let’s talk about the weather: a cluster-based approach to weather forecast accuracy," Computational Statistics, Springer, vol. 38(3), pages 1135-1155, September.
    20. Dong, Xinghui & Li, Jia & Gao, Di & Zheng, Kai, 2020. "Wind speed modeling for cascade clusters of wind turbines part 1: The cascade clusters of wind turbines," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:18:p:6565-:d:411144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.