IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i17p6063-d401685.html
   My bibliography  Save this article

The Condition of Air Pollution in Kraków, Poland, in 2005–2020, with Health Risk Assessment

Author

Listed:
  • Paulina Traczyk

    (Department of Environmental Protection, Geophysics and Environmental Protection, Faculty of Geology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Agnieszka Gruszecka-Kosowska

    (Department of Environmental Protection, Geophysics and Environmental Protection, Faculty of Geology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

Aims: Air quality changes with human health risk assessment were investigated. Methods: The measurement results obtained by the Regional Environmental Protection Inspectorate (REPI) in Kraków and our deposited particulate-matter (PM) analysis, as well as United States Environmental Protection Agency (USEPA) methodology of risk assessment were used in the study. Results: Annual pollutant contents kept decreasing, with the exception of O 3 . However, the permissible annual levels were exceeded in the cases of PM10, PM2.5, and NO 2 . Increased contents of SO 2 , CO, C 6 H 6 , PM10, and PM2.5, as well as of As, Pb, Cd, Ni, and polycyclic aromatic hydrocarbons (PAHs) in PM particles during winter months indicated that house heating was the source of pollution. Due to no significant change in the monthly NO 2 contents, this measurement was used as an indicator of traffic sources of pollution. In winter months, the allowable 24 h PM2.5 and PM10 contents were constantly exceeded. PM was identified as the most significant air pollutant. Enrichment factors revealed that deposited PM was enriched with heavy metals. The potential ecological risk (ERI) was determined to be very high for Cd, considerable for Zn, and low for As, Co, Cr, Cu, Ni, Pb, and Tl. The total non-carcinogenic risk indices (HQ) for both adults (HQ = 15.0) and children (HQ = 26.4) exceeded the acceptable value of 1. The total carcinogenic risk indices (CR) for both adults (CR = 1.51 × 10 −4 ) and children (CR = 1.77 × 10 −4 ) exceeded the acceptable level of 1 × 10 −4 . Conclusions: In the years 2005–2020, a general decreasing tendency of annual pollutant contents was observed. However, the permissible contaminant contents were still exceeded. PM2.5, BaP, PM10, and NO 2 were determined as the most dangerous pollutants in inhalational pathway.

Suggested Citation

  • Paulina Traczyk & Agnieszka Gruszecka-Kosowska, 2020. "The Condition of Air Pollution in Kraków, Poland, in 2005–2020, with Health Risk Assessment," IJERPH, MDPI, vol. 17(17), pages 1-22, August.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:17:p:6063-:d:401685
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/17/6063/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/17/6063/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zbigniew Zuśka & Joanna Kopcińska & Ewa Dacewicz & Barbara Skowera & Jakub Wojkowski & Agnieszka Ziernicka–Wojtaszek, 2019. "Application of the Principal Component Analysis (PCA) Method to Assess the Impact of Meteorological Elements on Concentrations of Particulate Matter (PM 10 ): A Case Study of the Mountain Valley (the ," Sustainability, MDPI, vol. 11(23), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grzegorz Woroniak & Joanna Piotrowska-Woroniak & Anna Woroniak & Edyta Owczarek & Krystyna Giza, 2024. "Analysis of the Hybrid Power-Heating System in a Single-Family Building, along with Ecological Aspects of the Operation," Energies, MDPI, vol. 17(11), pages 1-24, May.
    2. Liang Xiao & Yong Zhou & He Huang & Yu-Jie Liu & Ke Li & Meng-Yao Li & Yang Tian & Fei Wu, 2020. "Application of Geostatistical Analysis and Random Forest for Source Analysis and Human Health Risk Assessment of Potentially Toxic Elements (PTEs) in Arable Land Soil," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    3. Paweł Białynicki-Birula & Kamil Makieła & Łukasz Mamica, 2022. "Energy Literacy and Its Determinants among Students within the Context of Public Intervention in Poland," Energies, MDPI, vol. 15(15), pages 1-20, July.
    4. Karl Kilbo Edlund & Felicia Killman & Peter Molnár & Johan Boman & Leo Stockfelt & Janine Wichmann, 2021. "Health Risk Assessment of PM 2.5 and PM 2.5 -Bound Trace Elements in Thohoyandou, South Africa," IJERPH, MDPI, vol. 18(3), pages 1-11, February.
    5. Wojciech Nazar & Marek Niedoszytko, 2022. "Air Pollution in Poland: A 2022 Narrative Review with Focus on Respiratory Diseases," IJERPH, MDPI, vol. 19(2), pages 1-20, January.
    6. Katarzyna Solek-Podwika & Krystyna Ciarkowska, 2024. "Sources of the Trace Metals Contaminating Soils in Recreational Forest and Glade Areas in Krakow, a Large City in Southern Poland," Sustainability, MDPI, vol. 16(16), pages 1-16, August.
    7. Iana Markevych & Natasza Orlov & James Grellier & Katarzyna Kaczmarek-Majer & Małgorzata Lipowska & Katarzyna Sitnik-Warchulska & Yarema Mysak & Clemens Baumbach & Maja Wierzba-Łukaszyk & Munawar Huss, 2021. "NeuroSmog: Determining the Impact of Air Pollution on the Developing Brain: Project Protocol," IJERPH, MDPI, vol. 19(1), pages 1-19, December.
    8. Marta Czubaj-Kowal & Ryszard Kurzawa & Henryk Mazurek & Michał Sokołowski & Teresa Friediger & Maciej Polak & Grzegorz Józef Nowicki, 2021. "Relationship Between Air Pollution and the Concentration of Nitric Oxide in the Exhaled Air (FeNO) in 8–9-Year-Old School Children in Krakow," IJERPH, MDPI, vol. 18(13), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pauline Macharia & Maria Wirth & Paul Yillia & Norbert Kreuzinger, 2021. "Examining the Relative Impact of Drivers on Energy Input for Municipal Water Supply in Africa," Sustainability, MDPI, vol. 13(15), pages 1-27, July.
    2. Monika Załuska & Katarzyna Gładyszewska-Fiedoruk, 2020. "Regression Model of PM2.5 Concentration in a Single-Family House," Sustainability, MDPI, vol. 12(15), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:17:p:6063-:d:401685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.