IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i14p5204-d386546.html
   My bibliography  Save this article

Response of a Coastal Groundwater System to Natural and Anthropogenic Factors: Case Study on East Coast of Laizhou Bay, China

Author

Listed:
  • Ya Sun

    (School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China)

  • Shiguo Xu

    (School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China)

  • Qin Wang

    (School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China)

  • Suduan Hu

    (School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China)

  • Guoshuai Qin

    (School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China)

  • Huijuan Yu

    (School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China)

Abstract

With a shifting climate pattern and enhancement of human activities, coastal areas are exposed to threats of groundwater environmental issues. This work takes the eastern coast of Laizhou Bay as a research area to study the response of a coastal groundwater system to natural and human impacts with a combination of statistical, hydrogeochemical, and fuzzy classification methods. First, the groundwater level dynamics from 1980 to 2017 were analyzed. The average annual groundwater level dropped 13.16 m with a descent rate of 0.379 m/a. The main external environmental factors that affected the groundwater level were extracted, including natural factors (rainfall and temperature), as well as human activities (irrigated area, water-saving irrigated area, sown area of high-water-consumption crops, etc.). Back-propagation artificial neural network was used to model the response of groundwater level to the above driving factors, and sensitivity analysis was conducted to measure the extent of impact of these factors on groundwater level. The results verified that human factors including irrigated area and water-saving irrigated area were the most important influencing factors on groundwater level dynamics, followed by annual precipitation. Further, groundwater samples were collected over the study area to analyze the groundwater hydrogeochemical signatures. With the hydrochemical diagrams and ion ratios, the formation of groundwater, the sources of groundwater components, and the main hydrogeochemical processes controlling the groundwater evolution were discussed to understand the natural background of groundwater environment. The fuzzy C-means clustering method was adopted to classify the groundwater samples into four clusters based on their hydrochemical characteristics to reveal the spatial variation of groundwater quality in the research area. Each cluster was spatially continuous, and there were great differences in groundwater hydrochemical and pollution characteristics between different clusters. The natural and human factors resulted in this difference were discussed based on the natural background of the groundwater environment, and the types and intensity of human activity.

Suggested Citation

  • Ya Sun & Shiguo Xu & Qin Wang & Suduan Hu & Guoshuai Qin & Huijuan Yu, 2020. "Response of a Coastal Groundwater System to Natural and Anthropogenic Factors: Case Study on East Coast of Laizhou Bay, China," IJERPH, MDPI, vol. 17(14), pages 1-29, July.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:14:p:5204-:d:386546
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/14/5204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/14/5204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grant Ferguson & Tom Gleeson, 2012. "Vulnerability of coastal aquifers to groundwater use and climate change," Nature Climate Change, Nature, vol. 2(5), pages 342-345, May.
    2. Ya Sun & Shi Guo Xu & Ping Ping Kang & Yan Zhao Fu & Tian Xiang Wang, 2019. "Impacts of Artificial Underground Reservoir on Groundwater Environment in the Reservoir and Downstream Area," IJERPH, MDPI, vol. 16(11), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:ags:aaea22:335970 is not listed on IDEAS
    2. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," Economic Information Bulletin 327359, United States Department of Agriculture, Economic Research Service.
    3. Dam, Thi Huyen Trang & Tur-Cardona, Juan & Speelman, Stijn & Amjath-Babu, T.S. & Sam, Anu Susan & Zander, Peter, 2021. "Incremental and transformative adaptation preferences of rice farmers against increasing soil salinity - Evidence from choice experiments in north central Vietnam," Agricultural Systems, Elsevier, vol. 190(C).
    4. Kristie S. Gutierrez & Catherine E. LePrevost, 2016. "Climate Justice in Rural Southeastern United States: A Review of Climate Change Impacts and Effects on Human Health," IJERPH, MDPI, vol. 13(2), pages 1-21, February.
    5. Barrios Ramos, Iris & Espinoza Tenorio, Alejandro & Mesa Jurado, M. Azahara & Tovilla Hernández, Cristian & Mendoza Carranza, Manuel, 2021. "Percepción social de la salinización del agua para uso doméstico en Puerto Madero, Chiapas, México," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 21(01), June.
    6. Villholth, Karen, 2015. "Groundwater for food production and livelihoods - the nexus with climate change and transboundary water management," Book Chapters,, International Water Management Institute.
    7. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," USDA Miscellaneous 316792, United States Department of Agriculture.
    8. Sina Sadeghfam & Rahman Khatibi & Rasoul Daneshfaraz & Hamid Borhan Rashidi, 2020. "Transforming Vulnerability Indexing for Saltwater Intrusion into Risk Indexing through a Fuzzy Catastrophe Scheme," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 175-194, January.
    9. Lèye, Babacar & Koko, Jonas & Kane, Soulèye & Sy, Mamadou, 2018. "Numerical simulation of saltwater intrusion in coastal aquifers with anisotropic mesh adaptation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 154(C), pages 1-18.
    10. Abdelrahman M. Abdelgawad & Antoifi Abdoulhalik & Ashraf A. Ahmed & Salissou Moutari & G. Hamill, 2018. "Transient Investigation of the Critical Abstraction Rates in Coastal Aquifers: Numerical and Experimental Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(11), pages 3563-3577, September.
    11. Jimin Lee & Minji Park & Joong-Hyuk Min & Eun Hye Na, 2023. "Integrated Assessment of the Land Use Change and Climate Change Impact on Baseflow by Using Hydrologic Model," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    12. Qiaona Guo & Yahui Zhang & Zhifang Zhou & Zili Hu, 2020. "Transport of Contamination under the Influence of Sea Level Rise in Coastal Heterogeneous Aquifer," Sustainability, MDPI, vol. 12(23), pages 1-16, November.
    13. Gricelda Herrera-Franco & Paúl Carrión-Mero & Maribel Aguilar-Aguilar & Fernando Morante-Carballo & María Jaya-Montalvo & M.C. Morillo-Balsera, 2020. "Groundwater Resilience Assessment in a Communal Coastal Aquifer System. The Case of Manglaralto in Santa Elena, Ecuador," Sustainability, MDPI, vol. 12(19), pages 1-27, October.
    14. Jan van der Ploeg & Meshach Sukulu & Hugh Govan & Tessa Minter & Hampus Eriksson, 2020. "Sinking Islands, Drowned Logic; Climate Change and Community-Based Adaptation Discourses in Solomon Islands," Sustainability, MDPI, vol. 12(17), pages 1-24, September.
    15. K. Mazi & A. D. Koussis & G. Destouni, 2016. "Quantifying a Sustainable Management Space for Human Use of Coastal Groundwater under Multiple Change Pressures," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4063-4080, September.
    16. A. K. Behera & G. J. Chakrapani & S. Kumar & N. Rai, 2019. "Identification of seawater intrusion signatures through geochemical evolution of groundwater: a case study based on coastal region of the Mahanadi delta, Bay of Bengal, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1209-1230, July.
    17. Jobst Wurl & Miguel Angel Imaz-Lamadrid & Lía Celina Mendez-Rodriguez & Pablo Hernández-Morales, 2023. "Hydrochemical Indicator Analysis of Seawater Intrusion into Coastal Aquifers of Semiarid Areas," Resources, MDPI, vol. 12(4), pages 1-25, April.
    18. Bing Wang & Su-Yan Pan & Ruo-Yu Ke & Ke Wang & Yi-Ming Wei, 2014. "An overview of climate change vulnerability: a bibliometric analysis based on Web of Science database," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1649-1666, December.
    19. Zekâi Şen, 2020. "Water Structures and Climate Change Impact: a Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4197-4216, October.
    20. repec:mth:jas888:v:6:y:2018:i:1:p:260-297 is not listed on IDEAS
    21. Bruno, Ellen & Van Dop Sears, Molly & Hanemann, Michael, 2020. "Groundwater Quality and Crop Choice: Implications for the Cost of Seawater Intrusion," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304340, Agricultural and Applied Economics Association.
    22. Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala, 2014. "Introduction," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 1, pages 1-22, Edward Elgar Publishing.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:14:p:5204-:d:386546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.