IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i12p4211-d370824.html
   My bibliography  Save this article

Humin Assists Reductive Acetogenesis in Absence of Other External Electron Donor

Author

Listed:
  • Mahasweta Laskar

    (Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
    Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan)

  • Takuya Kasai

    (Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
    Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan)

  • Takanori Awata

    (National Institute for Land and Infrastructure Management, Tsukuba 305-0804, Japan)

  • Arata Katayama

    (Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
    Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan)

Abstract

The utilization of extracellular electron transfer by microorganism is highly engaging for remediation of toxic pollutants under “energy-starved” conditions. Humin, an organo-mineral complex of soil, has been instrumental as an external electron mediator for suitable electron donors in the remediative works of reductive dehalogenation, denitrification, and so forth. Here, we report, for the first time, that humin assists microbial acetogenesis as the extracellular electron donor using the electron acceptor CO 2 . Humin was obtained from Kamajima paddy soil, Japan. The anaerobic acetogenic consortium in mineral medium containing CO 2 / HCO 3 − as the inorganic carbon source used suspended humin as the energy source under mesophilic dark conditions. Retardation of acetogenesis under the CO 2 -deficient conditions demonstrated that humin did not function as the organic carbon source but as electron donor in the CO 2 -reducing acetogenesis. The consortium with humin also achieved anaerobic dechlorination with limited methanogenic activity. Total electron-donating capacity of humin was estimated at about 87 µeeq/g-humin. The metagenomic sequencing of 16S rRNA genes showed the predominance of Firmicutes (71.8 ± 2.5%) in the consortium, and Lachno spiraceae and Ruminococcaceae were considered as the CO 2 -reducing acetogens in the consortium. Thus, microbial fixation of CO 2 using humin introduces new insight to the holistic approach for sustainable treatment of contaminants in environment.

Suggested Citation

  • Mahasweta Laskar & Takuya Kasai & Takanori Awata & Arata Katayama, 2020. "Humin Assists Reductive Acetogenesis in Absence of Other External Electron Donor," IJERPH, MDPI, vol. 17(12), pages 1-13, June.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:12:p:4211-:d:370824
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/12/4211/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/12/4211/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahasweta Laskar & Takanori Awata & Takuya Kasai & Arata Katayama, 2019. "Anaerobic Dechlorination by a Humin-Dependent Pentachlorophenol-Dechlorinating Consortium under Autotrophic Conditions Induced by Homoacetogenesis," IJERPH, MDPI, vol. 16(16), pages 1-13, August.
    2. Margaret S. Torn & Susan E. Trumbore & Oliver A. Chadwick & Peter M. Vitousek & David M. Hendricks, 1997. "Mineral control of soil organic carbon storage and turnover," Nature, Nature, vol. 389(6647), pages 170-173, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tingting Hu & Duyen Minh Pham & Takuya Kasai & Arata Katayama, 2022. "The Emergence of Extracellular Electron Mediating Functionality in Rice Straw-Artificial Soil Mixture during Humification," IJERPH, MDPI, vol. 19(22), pages 1-18, November.
    2. Biec Nhu Ha & Duyen Minh Pham & Takuya Kasai & Takanori Awata & Arata Katayama, 2022. "Effect of Humin and Chemical Factors on CO 2 -Fixing Acetogenesis and Methanogenesis," IJERPH, MDPI, vol. 19(5), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Govind, Ajit & Chen, Jing Ming & Bernier, Pierre & Margolis, Hank & Guindon, Luc & Beaudoin, Andre, 2011. "Spatially distributed modeling of the long-term carbon balance of a boreal landscape," Ecological Modelling, Elsevier, vol. 222(15), pages 2780-2795.
    2. Fanfan Ju & Liuzhu Chen & Jiejun Zheng & Zhanqiang Chen & Xiaoli Wang & Xinxing Xia, 2022. "Elevation-Dependent Fluctuations of the Soil Properties in a Subtropical Forest of Central China," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    3. Steffen Schlüter & Frederic Leuther & Lukas Albrecht & Carmen Hoeschen & Rüdiger Kilian & Ronny Surey & Robert Mikutta & Klaus Kaiser & Carsten W. Mueller & Hans-Jörg Vogel, 2022. "Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Guoai Li & Xuxu Chai & Zheng Shi & Honghua Ruan, 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes," Land, MDPI, vol. 12(5), pages 1-17, May.
    5. Man Liu & Guilin Han & Xiaoqiang Li & Shitong Zhang & Wenxiang Zhou & Qian Zhang, 2020. "Effects of Soil Properties on K Factor in the Granite and Limestone Regions of China," IJERPH, MDPI, vol. 17(3), pages 1-13, January.
    6. Ryusuke Hatano & Ikabongo Mukumbuta & Mariko Shimizu, 2024. "Soil Health Intensification through Strengthening Soil Structure Improves Soil Carbon Sequestration," Agriculture, MDPI, vol. 14(8), pages 1-15, August.
    7. Cook, David & Malinauskaite, Laura & Davíðsdóttir, Brynhildur, 2022. "Peering into the fire – An exploration of volcanic ecosystem services," Ecosystem Services, Elsevier, vol. 55(C).
    8. Tingting Hu & Duyen Minh Pham & Takuya Kasai & Arata Katayama, 2022. "The Emergence of Extracellular Electron Mediating Functionality in Rice Straw-Artificial Soil Mixture during Humification," IJERPH, MDPI, vol. 19(22), pages 1-18, November.
    9. Dian Fiantis & Frisa Irawan Ginting & Gusnidar & M. Nelson & Budiman Minasny, 2019. "Volcanic Ash, Insecurity for the People but Securing Fertile Soil for the Future," Sustainability, MDPI, vol. 11(11), pages 1-19, May.
    10. Chin-Chiang Hsu & Heng Tsai & Wen-Shu Huang & Shiuh-Tsuen Huang, 2021. "Carbon Storage along with Soil Profile: An Example of Soil Chronosequence from the Fluvial Terraces on the Pakua Tableland, Taiwan," Land, MDPI, vol. 10(5), pages 1-14, April.
    11. Leah L. Bremer & Neil Nathan & Clay Trauernicht & Puaʻala Pascua & Nicholas Krueger & Jordan Jokiel & Jayme Barton & Gretchen C. Daily, 2021. "Maintaining the Many Societal Benefits of Rangelands: The Case of Hawaiʻi," Land, MDPI, vol. 10(7), pages 1-30, July.
    12. Jianliang Jia & Zhaojun Liu, 2021. "Particle-Size Fractionation and Thermal Variation of Oil Shales in the Songliao Basin, NE China: Implication for Hydrocarbon-Generated Process," Energies, MDPI, vol. 14(21), pages 1-17, November.
    13. Zhe (Han) Weng & Lukas Zwieten & Ehsan Tavakkoli & Michael T. Rose & Bhupinder Pal Singh & Stephen Joseph & Lynne M. Macdonald & Stephen Kimber & Stephen Morris & Terry J. Rose & Braulio S. Archanjo &, 2022. "Microspectroscopic visualization of how biochar lifts the soil organic carbon ceiling," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Yanjiang Zhang & Qing Zhen & Pengfei Li & Yongxing Cui & Junwei Xin & Yuan Yuan & Zhuhua Wu & Xingchang Zhang, 2020. "Storage of Soil Organic Carbon and Its Spatial Variability in an Agro-Pastoral Ecotone of Northern China," Sustainability, MDPI, vol. 12(6), pages 1-13, March.
    15. Márcio R. Nunes & Harold M. van Es & Kristen S. Veum & Joseph P. Amsili & Douglas L. Karlen, 2020. "Anthropogenic and Inherent Effects on Soil Organic Carbon across the U.S," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    16. Futao Zhang & Yunfa Qiao & Xiaozeng Han & Bin Zhang, 2021. "Variation of soil organic matter depends on light-fraction organic matter under long-term monocropping of different crops," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(10), pages 588-599.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:12:p:4211-:d:370824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.