IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i7p764-d597570.html
   My bibliography  Save this article

Maintaining the Many Societal Benefits of Rangelands: The Case of Hawaiʻi

Author

Listed:
  • Leah L. Bremer

    (University of Hawaiʻi Economic Research Organization, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
    Water Resources Research Center, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA)

  • Neil Nathan

    (Natural Capital Project, Department of Biology and Woods Institute, Stanford University, Stanford, CA 94305, USA)

  • Clay Trauernicht

    (Department of Natural Resources and Environmental Management, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA)

  • Puaʻala Pascua

    (American Museum of Natural History, Center for Biodiversity and Conservation, New York, NY 10024, USA)

  • Nicholas Krueger

    (College of Agriculture, Forestry, and Natural Resource Management (CAFNNRM), University of Hawaiʻi at Hilo, Hilo, HI 96720, USA)

  • Jordan Jokiel

    (Haleakalā Ranch, Makawao, HI 96768, USA)

  • Jayme Barton

    (Healthy Soils Hawaiʻi, Honolulu, HI 96822, USA)

  • Gretchen C. Daily

    (Natural Capital Project, Department of Biology and Woods Institute, Stanford University, Stanford, CA 94305, USA)

Abstract

Well-managed rangelands provide important economic, environmental, and cultural benefits. Yet, many rangelands worldwide are experiencing pressures of land-use change, overgrazing, fire, and drought, causing rapid degradation. These pressures are especially acute in the Hawaiian Islands, which we explore as a microcosm with some broadly relevant lessons. Absent stewardship, land in Hawaiʻi is typically subject to degradation through the spread and impacts of noxious invasive plant species; feral pigs, goats, deer, sheep, and cattle; and heightened fire risk. We first provide a framework, and then review the science demonstrating the benefits of well-managed rangelands, for production of food; livelihoods; watershed services; climate security; soil health; fire risk reduction; biodiversity; and a wide array of cultural values. Findings suggest that rangelands, as part of a landscape mosaic, contribute to social and ecological health and well-being in Hawaiʻi. We conclude by identifying important knowledge gaps around rangeland ecosystem services and highlight the need to recognize rangelands and their stewards as critical partners in achieving key sustainability goals, and in bridging the long-standing production-conservation divide.

Suggested Citation

  • Leah L. Bremer & Neil Nathan & Clay Trauernicht & Puaʻala Pascua & Nicholas Krueger & Jordan Jokiel & Jayme Barton & Gretchen C. Daily, 2021. "Maintaining the Many Societal Benefits of Rangelands: The Case of Hawaiʻi," Land, MDPI, vol. 10(7), pages 1-30, July.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:7:p:764-:d:597570
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/7/764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/7/764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Havstad, Kris M. & Peters, Debra P.C. & Skaggs, Rhonda & Brown, Joel & Bestelmeyer, Brandon & Fredrickson, Ed & Herrick, Jeffrey & Wright, Jack, 2007. "Ecological services to and from rangelands of the United States," Ecological Economics, Elsevier, vol. 64(2), pages 261-268, December.
    2. Goldman, Rebecca L. & Thompson, Barton H. & Daily, Gretchen C., 2007. "Institutional incentives for managing the landscape: Inducing cooperation for the production of ecosystem services," Ecological Economics, Elsevier, vol. 64(2), pages 333-343, December.
    3. Liang Yan & Guangsheng Zhou & Feng Zhang, 2013. "Effects of Different Grazing Intensities on Grassland Production in China: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    4. Margaret S. Torn & Susan E. Trumbore & Oliver A. Chadwick & Peter M. Vitousek & David M. Hendricks, 1997. "Mineral control of soil organic carbon storage and turnover," Nature, Nature, vol. 389(6647), pages 170-173, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caixia Hou & Mengmeng Zhang & Mengmeng Wang & Hanliang Fu & Mengjie Zhang, 2021. "Factors Influencing Grazing Behavior by Using the Consciousness-Context-Behavior Theory—A Case Study from Yanchi County, China," Land, MDPI, vol. 10(11), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mireille Chiroleu-Assouline & Sébastien Roussel, 2010. "Contract Design to Sequester Carbon in Agricultural Soils," Documents de travail du Centre d'Economie de la Sorbonne 10060, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    2. Taylor, Michael H. & Rollins, Kimberly, 2012. "Using Ecological Models to Coordinate Valuation of Ecological Change on Western Rangelands for ex post Application to Policy Analysis," Western Economics Forum, Western Agricultural Economics Association, vol. 11(1), pages 1-9.
    3. Govind, Ajit & Chen, Jing Ming & Bernier, Pierre & Margolis, Hank & Guindon, Luc & Beaudoin, Andre, 2011. "Spatially distributed modeling of the long-term carbon balance of a boreal landscape," Ecological Modelling, Elsevier, vol. 222(15), pages 2780-2795.
    4. Fanfan Ju & Liuzhu Chen & Jiejun Zheng & Zhanqiang Chen & Xiaoli Wang & Xinxing Xia, 2022. "Elevation-Dependent Fluctuations of the Soil Properties in a Subtropical Forest of Central China," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    5. Alain‐Désiré Nimubona & Jean‐Christophe Pereau, 2022. "Negotiating over payments for wetland ecosystem services," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(3), pages 1507-1538, August.
    6. Qenani-Petrela, Eivis & Noel, Jay E. & Mastin, Thomas, 2007. "A Benefit Transfer Approach to the Estimation of Agro-Ecosystems Services Benefits: A Case Study of Kern County, California," Research Project Reports 121605, California Polytechnic State University, San Luis Obispo, California Institute for the Study of Specialty Crops.
    7. Rose A Graves & Ryan D Haugo & Andrés Holz & Max Nielsen-Pincus & Aaron Jones & Bryce Kellogg & Cathy Macdonald & Kenneth Popper & Michael Schindel, 2020. "Potential greenhouse gas reductions from Natural Climate Solutions in Oregon, USA," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-30, April.
    8. Carmen Schwartz & Mostafa Shaaban & Sonoko Dorothea Bellingrath-Kimura & Annette Piorr, 2021. "Participatory Mapping of Demand for Ecosystem Services in Agricultural Landscapes," Agriculture, MDPI, vol. 11(12), pages 1-20, November.
    9. Chian Jones Ritten & Christopher Bastian & Jason F. Shogren & Thadchaigeni Panchalingam & Mariah D. Ehmke & Gregory Parkhurst, 2017. "Understanding Pollinator Habitat Conservation under Current Policy Using Economic Experiments," Land, MDPI, vol. 6(3), pages 1-13, August.
    10. Kuhfuss, Laure & Préget, Raphaële & Thoyer, Sophie & de Vries, Frans P. & Hanley, Nick, 2022. "Enhancing spatial coordination in payment for ecosystem services schemes with non-pecuniary preferences," Ecological Economics, Elsevier, vol. 192(C).
    11. Schleyer, Christian & Plieninger, Tobias, 2011. "Identifying obstacles to the design and implementation of payment schemes for ecosystem services provided through farm trees," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 115992, European Association of Agricultural Economists.
    12. Laura M. Norman & Miguel L. Villarreal & Rewati Niraula & Mark Haberstich & Natalie R. Wilson, 2019. "Modelling Development of Riparian Ranchlands Using Ecosystem Services at the Aravaipa Watershed, SE Arizona," Land, MDPI, vol. 8(4), pages 1-21, April.
    13. Spiegal, Sheri & Kleinman, Peter J.A. & Endale, Dinku M. & Bryant, Ray B. & Dell, Curtis & Goslee, Sarah & Meinen, Robert J. & Flynn, K. Colton & Baker, John M. & Browning, Dawn M. & McCarty, Greg & B, 2020. "Manuresheds: Advancing nutrient recycling in US agriculture," Agricultural Systems, Elsevier, vol. 182(C).
    14. Schilizzi, Steven & Breustedt, Gunnar & Latacz-Lohmann, Uwe, 2011. "Does tendering conservation contracts with performance payments generate additional benefits?," Working Papers 100883, University of Western Australia, School of Agricultural and Resource Economics.
    15. Latacz-Lohmann, U. & Schilizzi, S. & Breustedt, G., 2012. "Auctioning outcome-based conservation contracts," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 47, March.
    16. Xuemin Gong & Yijia Wang & Tianyu Zhan & Chenxu Wang & Changjia Li & Yanxu Liu, 2023. "Advances in Meta-Analysis of the Effects of Grazing on Grassland Ecosystems in China," Agriculture, MDPI, vol. 13(5), pages 1-16, May.
    17. Yang Bai & Jian Yang & Thomas O. Ochuodho & Bobby Thapa, 2024. "Impacts of Land Ownership and Forest Fragmentation on Water-Related Ecosystem Services Provision, Dynamics and Their Economic Valuation in Kentucky," Land, MDPI, vol. 13(7), pages 1-18, July.
    18. Houdet, Joël & Trommetter, Michel & Weber, Jacques, 2012. "Understanding changes in business strategies regarding biodiversity and ecosystem services," Ecological Economics, Elsevier, vol. 73(C), pages 37-46.
    19. Steffen Schlüter & Frederic Leuther & Lukas Albrecht & Carmen Hoeschen & Rüdiger Kilian & Ronny Surey & Robert Mikutta & Klaus Kaiser & Carsten W. Mueller & Hans-Jörg Vogel, 2022. "Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Guoai Li & Xuxu Chai & Zheng Shi & Honghua Ruan, 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes," Land, MDPI, vol. 12(5), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:7:p:764-:d:597570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.