IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7191-d670337.html
   My bibliography  Save this article

Particle-Size Fractionation and Thermal Variation of Oil Shales in the Songliao Basin, NE China: Implication for Hydrocarbon-Generated Process

Author

Listed:
  • Jianliang Jia

    (Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China)

  • Zhaojun Liu

    (College of Earth Sciences, Jilin University, Changchun 130061, China)

Abstract

The synchronous variation and association of organic matter (OM) and minerals in the hydrocarbon-generated process of oil shales are poorly understood. The goal of the paper is to investigate OM occurrence and thermal variation so as to reveal the hydrocarbon generation potential of oil shales. Based on detailed analyses of particle, organic, mineral, and thermal data from lacustrine oil shales in the Songliao Basin, we observed three layers of shale particles after settling in the water column characterized by a distinct color, degree of consolidation, and particle size. The particle sizes are divided into three ranges of fine grain (<1 μm), medium grain (1–20 μm), and coarse grain (>20 μm) via laser particle analysis. The particle-size distribution indicates the presence of OM polymerization and dominant contribution of the associated mineral surface and bioclastic OMs to the OM abundance of oil shale. Various OM occurrences are influenced by OM sources and redox conditions, whereas the degree of biodecomposition and particle sizes affect the placement of OM occurrences. Based on multiple thermal analyses, a synchronous response of OM and minerals to thermal variation dominates at 300–550 °C. The I/S and chlorite minerals are characterized by an entire illitization, while solid/absorbed OMs and hydrocarbon-generated water were expelled in large quantities. This contributes to major loss weights of oil shales during heating. The peak hydrocarbon-generated rate occurred at 457 °C for oil shales, corresponding to around 1.3% vitrinite reflectance value. These results are suggested to improve the understanding of OM occurrences and the thermal degradation constraint on the hydrocarbon-generated process, and contribute to the interpretation of the hydrocarbon generation potential and in-situ exploitation of oil shales.

Suggested Citation

  • Jianliang Jia & Zhaojun Liu, 2021. "Particle-Size Fractionation and Thermal Variation of Oil Shales in the Songliao Basin, NE China: Implication for Hydrocarbon-Generated Process," Energies, MDPI, vol. 14(21), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7191-:d:670337
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7191/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7191/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hilairy E. Hartnett & Richard G. Keil & John I. Hedges & Allan H. Devol, 1998. "Influence of oxygen exposure time on organic carbon preservation in continental margin sediments," Nature, Nature, vol. 391(6667), pages 572-575, February.
    2. Margaret S. Torn & Susan E. Trumbore & Oliver A. Chadwick & Peter M. Vitousek & David M. Hendricks, 1997. "Mineral control of soil organic carbon storage and turnover," Nature, Nature, vol. 389(6647), pages 170-173, September.
    3. Shuai Zhao & Qiang Li & Xiaoshu Lü & Youhong Sun, 2021. "Productivity Analysis of Fuyu Oil Shale In-Situ Pyrolysis by Injecting Hot Nitrogen," Energies, MDPI, vol. 14(16), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Zeng & Wentong He & Lihong Yang & Jianzheng Su & Xianglong Meng & Xueqi Cen & Wei Guo, 2022. "Evolution of Biomarker Maturity Parameters and Feedback to the Pyrolysis Process for In Situ Conversion of Nongan Oil Shale in Songliao Basin," Energies, MDPI, vol. 15(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Govind, Ajit & Chen, Jing Ming & Bernier, Pierre & Margolis, Hank & Guindon, Luc & Beaudoin, Andre, 2011. "Spatially distributed modeling of the long-term carbon balance of a boreal landscape," Ecological Modelling, Elsevier, vol. 222(15), pages 2780-2795.
    2. Fanfan Ju & Liuzhu Chen & Jiejun Zheng & Zhanqiang Chen & Xiaoli Wang & Xinxing Xia, 2022. "Elevation-Dependent Fluctuations of the Soil Properties in a Subtropical Forest of Central China," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    3. Steffen Schlüter & Frederic Leuther & Lukas Albrecht & Carmen Hoeschen & Rüdiger Kilian & Ronny Surey & Robert Mikutta & Klaus Kaiser & Carsten W. Mueller & Hans-Jörg Vogel, 2022. "Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Guoai Li & Xuxu Chai & Zheng Shi & Honghua Ruan, 2023. "Interactive Effects Determine Radiocarbon Abundance in Soil Fractions of Global Biomes," Land, MDPI, vol. 12(5), pages 1-17, May.
    5. Xuan Lu & Fengxia Zhou & Fajin Chen & Qibin Lao & Qingmei Zhu & Yafei Meng & Chunqing Chen, 2020. "Spatial and Seasonal Variations of Sedimentary Organic Matter in a Subtropical Bay: Implication for Human Interventions," IJERPH, MDPI, vol. 17(4), pages 1-20, February.
    6. Man Liu & Guilin Han & Xiaoqiang Li & Shitong Zhang & Wenxiang Zhou & Qian Zhang, 2020. "Effects of Soil Properties on K Factor in the Granite and Limestone Regions of China," IJERPH, MDPI, vol. 17(3), pages 1-13, January.
    7. Pavlos Avramidis & Vlasoula Bekiari, 2021. "Application of a catalytic oxidation method for the simultaneous determination of total organic carbon and total nitrogen in marine sediments and soils," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-14, June.
    8. Mahasweta Laskar & Takuya Kasai & Takanori Awata & Arata Katayama, 2020. "Humin Assists Reductive Acetogenesis in Absence of Other External Electron Donor," IJERPH, MDPI, vol. 17(12), pages 1-13, June.
    9. Bo Yang & Xuelu Gao & Jin Liu & Lei Xie & Jianmin Zhao & Qianguo Xing & Sandra Donnici & Luigi Tosi & Cheng Tang, 2023. "Biogeochemical Characteristics of Sedimentary Organic Matter in Coastal Waters of a Mariculture Area: The Big Impact of Bay Scallop Farming," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    10. Ryusuke Hatano & Ikabongo Mukumbuta & Mariko Shimizu, 2024. "Soil Health Intensification through Strengthening Soil Structure Improves Soil Carbon Sequestration," Agriculture, MDPI, vol. 14(8), pages 1-15, August.
    11. Cook, David & Malinauskaite, Laura & Davíðsdóttir, Brynhildur, 2022. "Peering into the fire – An exploration of volcanic ecosystem services," Ecosystem Services, Elsevier, vol. 55(C).
    12. Dian Fiantis & Frisa Irawan Ginting & Gusnidar & M. Nelson & Budiman Minasny, 2019. "Volcanic Ash, Insecurity for the People but Securing Fertile Soil for the Future," Sustainability, MDPI, vol. 11(11), pages 1-19, May.
    13. Chin-Chiang Hsu & Heng Tsai & Wen-Shu Huang & Shiuh-Tsuen Huang, 2021. "Carbon Storage along with Soil Profile: An Example of Soil Chronosequence from the Fluvial Terraces on the Pakua Tableland, Taiwan," Land, MDPI, vol. 10(5), pages 1-14, April.
    14. Yang, Qinchuan & Guo, Wei & Xu, Shaotao & Zhu, Chaofan, 2023. "The autothermic pyrolysis in-situ conversion process for oil shale recovery: Effect of gas injection parameters," Energy, Elsevier, vol. 283(C).
    15. Leah L. Bremer & Neil Nathan & Clay Trauernicht & Puaʻala Pascua & Nicholas Krueger & Jordan Jokiel & Jayme Barton & Gretchen C. Daily, 2021. "Maintaining the Many Societal Benefits of Rangelands: The Case of Hawaiʻi," Land, MDPI, vol. 10(7), pages 1-30, July.
    16. Zhe (Han) Weng & Lukas Zwieten & Ehsan Tavakkoli & Michael T. Rose & Bhupinder Pal Singh & Stephen Joseph & Lynne M. Macdonald & Stephen Kimber & Stephen Morris & Terry J. Rose & Braulio S. Archanjo &, 2022. "Microspectroscopic visualization of how biochar lifts the soil organic carbon ceiling," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Yanjiang Zhang & Qing Zhen & Pengfei Li & Yongxing Cui & Junwei Xin & Yuan Yuan & Zhuhua Wu & Xingchang Zhang, 2020. "Storage of Soil Organic Carbon and Its Spatial Variability in an Agro-Pastoral Ecotone of Northern China," Sustainability, MDPI, vol. 12(6), pages 1-13, March.
    18. Márcio R. Nunes & Harold M. van Es & Kristen S. Veum & Joseph P. Amsili & Douglas L. Karlen, 2020. "Anthropogenic and Inherent Effects on Soil Organic Carbon across the U.S," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    19. Jingyu Liu & Yipeng Wang & Samuel L. Jaccard & Nan Wang & Xun Gong & Nianqiao Fang & Rui Bao, 2023. "Pre-aged terrigenous organic carbon biases ocean ventilation-age reconstructions in the North Atlantic," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Futao Zhang & Yunfa Qiao & Xiaozeng Han & Bin Zhang, 2021. "Variation of soil organic matter depends on light-fraction organic matter under long-term monocropping of different crops," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(10), pages 588-599.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7191-:d:670337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.