IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i11p4047-d367986.html
   My bibliography  Save this article

Short-Term Effects of Ambient Ozone, PM 2.5, and Meteorological Factors on COVID-19 Confirmed Cases and Deaths in Queens, New York

Author

Listed:
  • Atin Adhikari

    (Department of Biostatistics, Epidemiology & Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30460, USA)

  • Jingjing Yin

    (Department of Biostatistics, Epidemiology & Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30460, USA)

Abstract

The outbreak of coronavirus disease 2019 (COVID-19), caused by the virus SARS-CoV-2, has been rapidly increasing in the United States. Boroughs of New York City, including Queens county, turn out to be the epicenters of this infection. According to the data provided by the New York State Department of Health, most of the cases of new COVID-19 infections in New York City have been found in the Queens county where 42,023 people have tested positive, and 3221 people have died as of 20 April 2020. Person-to-person transmission and travels were implicated in the initial spread of the outbreaks, but factors related to the late phase of rapidly spreading outbreaks in March and April are still uncertain. A few previous studies have explored the links between air pollution and COVID-19 infections, but more data is needed to understand the effects of short-term exposures of air pollutants and meteorological factors on the spread of COVID-19 infections, particularly in the U.S. disease epicenters. In this study, we have focused on ozone and PM 2.5 , two major air pollutants in New York City, which were previously found to be associated with respiratory viral infections. The aim of our regression modeling was to explore the associations among ozone, PM 2.5 , daily meteorological variables (wind speed, temperature, relative humidity, absolute humidity, cloud percentages, and precipitation levels), and COVID-19 confirmed new cases and new deaths in Queens county, New York during March and April 2020. The results from these analyses showed that daily average temperature, daily maximum eight-hour ozone concentration, average relative humidity, and cloud percentages were significantly and positively associated with new confirmed cases related to COVID-19; none of these variables showed significant associations with new deaths related to COVID-19. The findings indicate that short-term exposures to ozone and other meteorological factors can influence COVID-19 transmission and initiation of the disease, but disease aggravation and mortality depend on other factors.

Suggested Citation

  • Atin Adhikari & Jingjing Yin, 2020. "Short-Term Effects of Ambient Ozone, PM 2.5, and Meteorological Factors on COVID-19 Confirmed Cases and Deaths in Queens, New York," IJERPH, MDPI, vol. 17(11), pages 1-13, June.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:11:p:4047-:d:367986
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/11/4047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/11/4047/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zeileis, Achim & Kleiber, Christian & Jackman, Simon, 2008. "Regression Models for Count Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i08).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tingting Wang & Linjie Qin & Chao Dai & Zhen Wang & Chenqi Gong, 2023. "Heterogeneous Learning of Functional Clustering Regression and Application to Chinese Air Pollution Data," IJERPH, MDPI, vol. 20(5), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Totterman, Stephen, 2021. "Vehicle-based recreation and compliance for three beaches in northern New South Wales," OSF Preprints ja8h6, Center for Open Science.
    2. Jong-Hyun Kim & Yong-Gil Lee, 2021. "Factors of Collaboration Affecting the Performance of Alternative Energy Patents in South Korea from 2010 to 2017," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    3. Olga Alipova & Lada Litvinova & Andrey Lovakov & Maria Yudkevich, 2018. "Inbreds And Non-Inbreds Among Russian Academics: Short-Term Similarity And Long-Term Differences In Productivity," HSE Working papers WP BRP 48/EDU/2018, National Research University Higher School of Economics.
    4. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    5. Sewando, Ponsian T. & Mdoe, N. Y. S. & Mutabazi, K. D. S, 2011. "Farmers’ preferential choice decisions to alternative cassava value chain strands in Morogoro rural district, Tanzania," MPRA Paper 29797, University Library of Munich, Germany.
    6. Merl, Robert & Palan, Stefan & Schmidt, Dominik & Stöckl, Thomas, 2023. "Insider trading regulation and trader migration," Journal of Financial Markets, Elsevier, vol. 66(C).
    7. Sean J. Blamires & Cheng-Hui Lai & Ren-Chung Cheng & Chen-Pan Liao & Pao-Sheng Shen & I-Min Tso, 2012. "Body spot coloration of a nocturnal sit-and-wait predator visually lures prey," Behavioral Ecology, International Society for Behavioral Ecology, vol. 23(1), pages 69-74.
    8. Lawrence N Kazembe, 2013. "A Bayesian Two Part Model Applied to Analyze Risk Factors of Adult Mortality with Application to Data from Namibia," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-10, September.
    9. Erich Striessnig & Elke Loichinger, 2015. "Future differential vulnerability to natural disasters by level of education," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 13(1), pages 221-240.
    10. Ina Falfán & Luis Zambrano, 2023. "Lacustrine Urban Blue Spaces: Low Availability and Inequitable Distribution in the Most Populated Cities in Mexico," Land, MDPI, vol. 12(1), pages 1-18, January.
    11. Gerike, Regine & Gehlert, Tina & Leisch, Friedrich, 2015. "Time use in travel surveys and time use surveys – Two sides of the same coin?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 76(C), pages 4-24.
    12. Guarino, Ernestino de Souza Gomes & Barbosa, Ana Márcia & Waechter, Jorge Luiz, 2012. "Occurrence and abundance models of threatened plant species: Applications to mitigate the impact of hydroelectric power dams," Ecological Modelling, Elsevier, vol. 230(C), pages 22-33.
    13. Evgenii V. Gilenko & Elena A. Mironova, 2017. "Modern claim frequency and claim severity models: An application to the Russian motor own damage insurance market," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1311097-131, January.
    14. Livio Finos & Fortunato Pesarin, 2020. "On zero-inflated permutation testing and some related problems," Statistical Papers, Springer, vol. 61(5), pages 2157-2174, October.
    15. Andre Jungmittag, 2019. "Service trade restrictiveness and internationalisation of retail trade," International Economics and Economic Policy, Springer, vol. 16(2), pages 293-333, April.
    16. Giulio Cainelli & Donato Iacobucci & Alessandra Micozzi, 2015. "Determinants of territorial differences in entrepreneurial rates. An empirical analysis of Italian local systems," Working Papers 1502, c.MET-05 - Centro Interuniversitario di Economia Applicata alle Politiche per L'industria, lo Sviluppo locale e l'Internazionalizzazione, revised Feb 2015.
    17. Erni, Birgit & Bonnevie, Bo T. & Oschadleus, Hans-Dieter & Altwegg, Res & Underhill, Les G., 2013. "moult: An R Package to Analyze Moult in Birds," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i08).
    18. Christophe Dutang, 2012. "The customer, the insurer and the market," Post-Print hal-01616152, HAL.
    19. Wan Jing Low & Paul Wilson & Mike Thelwall, 2016. "Stopped sum models and proposed variants for citation data," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 369-384, May.
    20. Zeileis, Achim & Koenker, Roger, 2008. "Econometrics in R: Past, Present, and Future," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i01).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:11:p:4047-:d:367986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.