IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i10p3520-d359576.html
   My bibliography  Save this article

Marine Predators Algorithm for Forecasting Confirmed Cases of COVID-19 in Italy, USA, Iran and Korea

Author

Listed:
  • Mohammed A. A. Al-qaness

    (State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China)

  • Ahmed A. Ewees

    (Department of e-Systems, University of Bisha, Bisha 61922, Saudi Arabia
    Department of Computer, Damietta University, Damietta 34517, Egypt)

  • Hong Fan

    (State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China)

  • Laith Abualigah

    (Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan)

  • Mohamed Abd Elaziz

    (Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt)

Abstract

The current pandemic of the new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or COVID-19, has received wide attention by scholars and researchers. The vast increase in infected people is a significant challenge for each country and the international community in general. The prediction and forecasting of the number of infected people (so-called confirmed cases) is a critical issue that helps in understanding the fast spread of COVID-19. Therefore, in this article, we present an improved version of the ANFIS (adaptive neuro-fuzzy inference system) model to forecast the number of infected people in four countries, Italy, Iran, Korea, and the USA. The improved version of ANFIS is based on a new nature-inspired optimizer, called the marine predators algorithm (MPA). The MPA is utilized to optimize the ANFIS parameters, enhancing its forecasting performance. Official datasets of the four countries are used to evaluate the proposed MPA-ANFIS. Moreover, we compare MPA-ANFIS to several previous methods to evaluate its forecasting performance. Overall, the outcomes show that MPA-ANFIS outperforms all compared methods in almost all performance measures, such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), and Coefficient of Determination( R 2 ). For instance, according to the results of the testing set, the R 2 of the proposed model is 96.48%, 98.59%, 98.74%, and 95.95% for Korea, Italy, Iran, and the USA, respectively. More so, the MAE is 60.31, 3951.94, 217.27, and 12,979, for Korea, Italy, Iran, and the USA, respectively.

Suggested Citation

  • Mohammed A. A. Al-qaness & Ahmed A. Ewees & Hong Fan & Laith Abualigah & Mohamed Abd Elaziz, 2020. "Marine Predators Algorithm for Forecasting Confirmed Cases of COVID-19 in Italy, USA, Iran and Korea," IJERPH, MDPI, vol. 17(10), pages 1-14, May.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:10:p:3520-:d:359576
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/10/3520/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/10/3520/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammed A. A. Al-qaness & Ahmed A. Ewees & Hong Fan & Mohamed Abd Elaziz, 2020. "Optimized Forecasting Method for Weekly Influenza Confirmed Cases," IJERPH, MDPI, vol. 17(10), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thavavel Vaiyapuri & Sharath Kumar Jagannathan & Mohammed Altaf Ahmed & K. C. Ramya & Gyanendra Prasad Joshi & Soojeong Lee & Gangseong Lee, 2023. "Sustainable Artificial Intelligence-Based Twitter Sentiment Analysis on COVID-19 Pandemic," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    2. Abidhan Bardhan & Raushan Kumar Singh & Sufyan Ghani & Gerasimos Konstantakatos & Panagiotis G. Asteris, 2023. "Modelling Soil Compaction Parameters Using an Enhanced Hybrid Intelligence Paradigm of ANFIS and Improved Grey Wolf Optimiser," Mathematics, MDPI, vol. 11(14), pages 1-23, July.
    3. Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
    4. Laith Abualigah & Ali Diabat, 2023. "Improved multi-core arithmetic optimization algorithm-based ensemble mutation for multidisciplinary applications," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1833-1874, April.
    5. Khizer Mehmood & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Zeshan Aslam Khan & Muhammad Asif Zahoor Raja & Ahmad H. Milyani & Abdulellah Alsulami, 2023. "Design of Nonlinear Marine Predator Heuristics for Hammerstein Autoregressive Exogenous System Identification with Key-Term Separation," Mathematics, MDPI, vol. 11(11), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bader S. Al-Anzi & Mohammad Alenizi & Jehad Al Dallal & Frage Lhadi Abookleesh & Aman Ullah, 2020. "An Overview of the World Current and Future Assessment of Novel COVID-19 Trajectory, Impact, and Potential Preventive Strategies at Healthcare Settings," IJERPH, MDPI, vol. 17(19), pages 1-19, September.
    2. Yu-Feng Zhao & Ming-Huan Shou & Zheng-Xin Wang, 2020. "Prediction of the Number of Patients Infected with COVID-19 Based on Rolling Grey Verhulst Models," IJERPH, MDPI, vol. 17(12), pages 1-20, June.
    3. Sheikh Safiullah & Asadur Rahman & Shameem Ahmad Lone & S. M. Suhail Hussain & Taha Selim Ustun, 2022. "Novel COVID-19 Based Optimization Algorithm (C-19BOA) for Performance Improvement of Power Systems," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    4. Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
    5. Sergio Contreras-Espinoza & Francisco Novoa-Muñoz & Szabolcs Blazsek & Pedro Vidal & Christian Caamaño-Carrillo, 2022. "COVID-19 Active Case Forecasts in Latin American Countries Using Score-Driven Models," Mathematics, MDPI, vol. 11(1), pages 1-17, December.
    6. Tian-Shyug Lee & I-Fei Chen & Ting-Jen Chang & Chi-Jie Lu, 2020. "Forecasting Weekly Influenza Outpatient Visits Using a Two-Dimensional Hierarchical Decision Tree Scheme," IJERPH, MDPI, vol. 17(13), pages 1-15, July.
    7. Qiang Wang & Min Su & Min Zhang & Rongrong Li, 2021. "Integrating Digital Technologies and Public Health to Fight Covid-19 Pandemic: Key Technologies, Applications, Challenges and Outlook of Digital Healthcare," IJERPH, MDPI, vol. 18(11), pages 1-50, June.
    8. Tasneem Kamal Aldeen Muhamed & Mona Yahya Salim Alfefi & Nahla Morad, 2022. "Analysis Impact of Coronavirus in the Kingdom of Saudi Arabia by Using the Artificial Neural Network," Eximia Journal, Plus Communication Consulting SRL, vol. 5(1), pages 146-157, July.
    9. Godahewa, Rakshitha & Bergmeir, Christoph & Webb, Geoffrey I. & Montero-Manso, Pablo, 2023. "An accurate and fully-automated ensemble model for weekly time series forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 641-658.
    10. Dabiah Alboaneen & Bernardi Pranggono & Dhahi Alshammari & Nourah Alqahtani & Raja Alyaffer, 2020. "Predicting the Epidemiological Outbreak of the Coronavirus Disease 2019 (COVID-19) in Saudi Arabia," IJERPH, MDPI, vol. 17(12), pages 1-10, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:10:p:3520-:d:359576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.