Prediction of the Number of Patients Infected with COVID-19 Based on Rolling Grey Verhulst Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Akay, Diyar & Atak, Mehmet, 2007. "Grey prediction with rolling mechanism for electricity demand forecasting of Turkey," Energy, Elsevier, vol. 32(9), pages 1670-1675.
- Mohammed A. A. Al-qaness & Ahmed A. Ewees & Hong Fan & Mohamed Abd Elaziz, 2020. "Optimized Forecasting Method for Weekly Influenza Confirmed Cases," IJERPH, MDPI, vol. 17(10), pages 1-12, May.
- Qian Liu & Bo Li & Muhammad Mohiuddin, 2018. "Prediction and Decomposition of Efficiency Differences in Chinese Provincial Community Health Services," IJERPH, MDPI, vol. 15(10), pages 1-14, October.
- Liping Zhang & Li Wang & Yanling Zheng & Kai Wang & Xueliang Zhang & Yujian Zheng, 2017. "Time Prediction Models for Echinococcosis Based on Gray System Theory and Epidemic Dynamics," IJERPH, MDPI, vol. 14(3), pages 1-14, March.
- Xu, Ning & Ding, Song & Gong, Yande & Bai, Ju, 2019. "Forecasting Chinese greenhouse gas emissions from energy consumption using a novel grey rolling model," Energy, Elsevier, vol. 175(C), pages 218-227.
- Ling-Ling Pei & Qin Li & Zheng-Xin Wang, 2018. "The NLS-Based Nonlinear Grey Multivariate Model for Forecasting Pollutant Emissions in China," IJERPH, MDPI, vol. 15(3), pages 1-17, March.
- Hua’an Wu & Bo Zeng & Meng Zhou, 2017. "Forecasting the Water Demand in Chongqing, China Using a Grey Prediction Model and Recommendations for the Sustainable Development of Urban Water Consumption," IJERPH, MDPI, vol. 14(11), pages 1-12, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Duan, Huiming & Nie, Weige, 2022. "A novel grey model based on Susceptible Infected Recovered Model: A case study of COVD-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
- Ning Zhang & Zaiwu Gong & Kedong Yin & Yuhong Wang, 2018. "Special Issue “Decision Models in Green Growth and Sustainable Development”," IJERPH, MDPI, vol. 15(6), pages 1-8, May.
- Li, Der-Chiang & Chang, Che-Jung & Chen, Chien-Chih & Chen, Wen-Chih, 2012. "Forecasting short-term electricity consumption using the adaptive grey-based approach—An Asian case," Omega, Elsevier, vol. 40(6), pages 767-773.
- Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Shujaat Abbas & Hazrat Yousaf & Shabeer Khan & Mohd Ziaur Rehman & Dmitri Blueschke, 2023. "Analysis and Projection of Transport Sector Demand for Energy and Carbon Emission: An Application of the Grey Model in Pakistan," Mathematics, MDPI, vol. 11(6), pages 1-14, March.
- Zhou, Dengji & Yu, Ziqiang & Zhang, Huisheng & Weng, Shilie, 2016. "A novel grey prognostic model based on Markov process and grey incidence analysis for energy conversion equipment degradation," Energy, Elsevier, vol. 109(C), pages 420-429.
- Yang, Yang & Xue, Dingyü, 2016. "Continuous fractional-order grey model and electricity prediction research based on the observation error feedback," Energy, Elsevier, vol. 115(P1), pages 722-733.
- Dilaver, Zafer & Hunt, Lester C., 2011.
"Turkish aggregate electricity demand: An outlook to 2020,"
Energy, Elsevier, vol. 36(11), pages 6686-6696.
- Zafer Dilaver & Lester C Hunt, 2011. "Turkish Aggregate Electricity Demand: An Outlook to 2020," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 132, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
- Wang, Qiang & Li, Shuyu & Li, Rongrong & Ma, Minglu, 2018. "Forecasting U.S. shale gas monthly production using a hybrid ARIMA and metabolic nonlinear grey model," Energy, Elsevier, vol. 160(C), pages 378-387.
- Lee, Yi-Shian & Tong, Lee-Ing, 2012. "Forecasting nonlinear time series of energy consumption using a hybrid dynamic model," Applied Energy, Elsevier, vol. 94(C), pages 251-256.
- Wu, Qunli & Peng, Chenyang, 2017. "A hybrid BAG-SA optimal approach to estimate energy demand of China," Energy, Elsevier, vol. 120(C), pages 985-995.
- Bader S. Al-Anzi & Mohammad Alenizi & Jehad Al Dallal & Frage Lhadi Abookleesh & Aman Ullah, 2020. "An Overview of the World Current and Future Assessment of Novel COVID-19 Trajectory, Impact, and Potential Preventive Strategies at Healthcare Settings," IJERPH, MDPI, vol. 17(19), pages 1-19, September.
- Zhenhui Huang & Wei Wei & Ying Han & Shuangying Ding & Ke Tang, 2022. "The Coupling Coordination Evolutionary Analysis of Tourism-Ecological Environment-Public Service for the Yellow River Basin of China," IJERPH, MDPI, vol. 19(15), pages 1-23, July.
- NGO, Hoang Anh & HOANG, Thai Nam, 2020. "A Rolling Optimized Nonlinear Grey Bernoulli Model RONGBM(1,1) and application in predicting total COVID-19 cases," OSF Preprints 6y95m, Center for Open Science.
- Miao, Yuang & Lu, Huixia & Cui, Shizhang & Zhang, Xu & Zhang, Yusheng & Song, Xinwang & Cheng, Haiying, 2024. "CO2 emissions change in Tianjin: The driving factors and the role of CCS," Applied Energy, Elsevier, vol. 353(PA).
- Fang Wu & Mingyao Gu & Chenming Zhu & Yingna Qu, 2023. "Temporal-Spatial Evolution and Trend Prediction of the Supply Efficiency of Primary Medical Health Service—An Empirical Study Based on Central and Western Regions of China," IJERPH, MDPI, vol. 20(3), pages 1-23, January.
- Assareh, E. & Behrang, M.A. & Assari, M.R. & Ghanbarzadeh, A., 2010. "Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran," Energy, Elsevier, vol. 35(12), pages 5223-5229.
- Yi-Chung Hu & Peng Jiang & Jung-Fa Tsai & Ching-Ying Yu, 2021. "An Optimized Fractional Grey Prediction Model for Carbon Dioxide Emissions Forecasting," IJERPH, MDPI, vol. 18(2), pages 1-12, January.
- Mehmet Kayakuş, 2020. "The Estimation of Turkey's Energy Demand Through Artificial Neural Networks and Support Vector Regression Methods," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 8(2), pages 227-236, December.
- Kucukali, Serhat & Baris, Kemal, 2010. "Turkey's short-term gross annual electricity demand forecast by fuzzy logic approach," Energy Policy, Elsevier, vol. 38(5), pages 2438-2445, May.
More about this item
Keywords
COVID-19; grey prediction; rolling mechanism; grey Verhulst model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:12:p:4582-:d:376409. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.