IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i14p3064-d1191591.html
   My bibliography  Save this article

Modelling Soil Compaction Parameters Using an Enhanced Hybrid Intelligence Paradigm of ANFIS and Improved Grey Wolf Optimiser

Author

Listed:
  • Abidhan Bardhan

    (Department of Civil Engineering, National Institute of Technology, Patna 800005, India)

  • Raushan Kumar Singh

    (Department of Computer Engineering and Applications, GLA University, Mathura 281406, India)

  • Sufyan Ghani

    (Department of Civil Engineering, Sharda University, Greater Noida 201310, India)

  • Gerasimos Konstantakatos

    (Computational Mechanics Laboratory, School of Pedagogical and Technological Education, 14121 Athens, Greece)

  • Panagiotis G. Asteris

    (Computational Mechanics Laboratory, School of Pedagogical and Technological Education, 14121 Athens, Greece)

Abstract

The criteria for measuring soil compaction parameters, such as optimum moisture content and maximum dry density, play an important role in construction projects. On construction sites, base/sub-base soils are compacted at the optimal moisture content to achieve the desirable level of compaction, generally between 95% and 98% of the maximum dry density. The present technique of determining compaction parameters in the laboratory is a time-consuming task. This study proposes an improved hybrid intelligence paradigm as an alternative tool to the laboratory method for estimating the optimum moisture content and maximum dry density of soils. For this purpose, an advanced version of the grey wolf optimiser (GWO) called improved GWO (IGWO) was integrated with an adaptive neuro-fuzzy inference system (ANFIS), which resulted in a high-performance hybrid model named ANFIS-IGWO. Overall, the results indicate that the proposed ANFIS-IGWO model achieved the most precise prediction of the optimum moisture content (degree of correlation = 0.9203 and root mean square error = 0.0635) and maximum dry density (degree of correlation = 0.9050 and root mean square error = 0.0709) of soils. The outcomes of the suggested model are noticeably superior to those attained by other hybrid ANFIS models, which are built with standard GWO, Moth-flame optimisation, slime mould algorithm, and marine predators algorithm. The results indicate that geotechnical engineers can benefit from the newly developed ANFIS-IGWO model during the design stage of civil engineering projects. The developed MATLAB models are also included for determining soil compaction parameters.

Suggested Citation

  • Abidhan Bardhan & Raushan Kumar Singh & Sufyan Ghani & Gerasimos Konstantakatos & Panagiotis G. Asteris, 2023. "Modelling Soil Compaction Parameters Using an Enhanced Hybrid Intelligence Paradigm of ANFIS and Improved Grey Wolf Optimiser," Mathematics, MDPI, vol. 11(14), pages 1-23, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3064-:d:1191591
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/14/3064/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/14/3064/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammed A. A. Al-qaness & Ahmed A. Ewees & Hong Fan & Laith Abualigah & Mohamed Abd Elaziz, 2020. "Marine Predators Algorithm for Forecasting Confirmed Cases of COVID-19 in Italy, USA, Iran and Korea," IJERPH, MDPI, vol. 17(10), pages 1-14, May.
    2. Sina Paryani & Aminreza Neshat & Saman Javadi & Biswajeet Pradhan, 2020. "Comparative performance of new hybrid ANFIS models in landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1961-1988, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oludamilare Bode Adewuyi & Senthil Krishnamurthy, 2024. "Performance Analysis for Predictive Voltage Stability Monitoring Using Enhanced Adaptive Neuro-Fuzzy Expert System," Mathematics, MDPI, vol. 12(19), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saeed Davar & Masoud Nobahar & Mohammad Sadik Khan & Farshad Amini, 2022. "The Development of PSO-ANN and BOA-ANN Models for Predicting Matric Suction in Expansive Clay Soil," Mathematics, MDPI, vol. 10(16), pages 1-38, August.
    2. Christos Polykretis & Manolis G. Grillakis & Athanasios V. Argyriou & Nikos Papadopoulos & Dimitrios D. Alexakis, 2021. "Integrating Multivariate (GeoDetector) and Bivariate (IV) Statistics for Hybrid Landslide Susceptibility Modeling: A Case of the Vicinity of Pinios Artificial Lake, Ilia, Greece," Land, MDPI, vol. 10(9), pages 1-23, September.
    3. Bo Cao & Qingyi Li & Yuhang Zhu, 2022. "Comparison of Effects between Different Weight Calculation Methods for Improving Regional Landslide Susceptibility—A Case Study from Xingshan County of China," Sustainability, MDPI, vol. 14(17), pages 1-15, September.
    4. Thavavel Vaiyapuri & Sharath Kumar Jagannathan & Mohammed Altaf Ahmed & K. C. Ramya & Gyanendra Prasad Joshi & Soojeong Lee & Gangseong Lee, 2023. "Sustainable Artificial Intelligence-Based Twitter Sentiment Analysis on COVID-19 Pandemic," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    5. Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
    6. Omid Asadi Nalivan & Ziaedin Badehian & Majid Sadeghinia & Adel Soltani & Iman Islami & Ali Boustan, 2022. "A step beyond susceptibility: an adaptation of risk framework for monetary risk estimation of gully erosion," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1661-1684, March.
    7. Laith Abualigah & Ali Diabat, 2023. "Improved multi-core arithmetic optimization algorithm-based ensemble mutation for multidisciplinary applications," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1833-1874, April.
    8. Yewei Song & Jie Guo & Fengshan Ma & Jia Liu & Guang Li, 2023. "Improving the Accuracy of Regional Engineering Disturbance Disaster Susceptibility by Optimizing Weight Calculation Methods—A Case Study in the Himalayan Area, China," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    9. Khizer Mehmood & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Zeshan Aslam Khan & Muhammad Asif Zahoor Raja & Ahmad H. Milyani & Abdulellah Alsulami, 2023. "Design of Nonlinear Marine Predator Heuristics for Hammerstein Autoregressive Exogenous System Identification with Key-Term Separation," Mathematics, MDPI, vol. 11(11), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3064-:d:1191591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.